• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 70
  • 70
  • 70
  • 35
  • 24
  • 24
  • 23
  • 19
  • 15
  • 12
  • 12
  • 11
  • 10
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

PHASE BEHAVIOR OF AMORPHOUS SOLID DISPERSIONS: MISCIBILITY AND MOLECULAR INTERACTIONS

Sarpal, Kanika 01 January 2019 (has links)
Over the past few decades, amorphous solid dispersions (ASDs) have been of great interest to pharmaceutical scientists to address bioavailability issues associated with poorly water-soluble drugs. ASDs consist of an active pharmaceutical ingredient (API) that is typically dispersed in an inert polymeric matrix. Despite promising advantages, a major concern that has resulted in limited marketed formulations is the physical instability of these complex formulations. Physical instability is often manifested as phase heterogeneity, where the drug and carrier migrate and generate distinct phases, which can be a prelude to recrystallization. One important factor that dictates the physical stability of ASDs is the spatial distribution of API in the polymeric matrix. It is generally agreed that intimate mixing of the drug and polymer is necessary to achieve maximum stabilization, and thus understanding the factors controlling phase mixing and nano-domain structure of ASDs is crucial to rational formulation design. The focus of this thesis work is to better understand the factors involved in phase mixing on the nanometric level and get insights on the role of excipients on overall stabilization of these systems. The central hypothesis of this research is that an intimately mixed ASD will have better physical stability as compared to a partially homogeneous or a non-homogeneous system. Our approach is to probe and correlate phase homogeneity and intermolecular drug-excipient interactions to better understand the physical stability of ASDs primarily using solid-state nuclear magnetic resonance (SSNMR) spectroscopy and other solid-state characterization tools. A detailed investigation was carried out to understand the role of hydrogen bonding on compositional homogeneity on different model systems. A comprehensive characterization of ternary ASDs in terms of molecular interactions and physical stability was studied. Finally, long-term physical stability studies were conducted in order to understand the impact of different grades of a cellulosic polymer on phase homogeneity for two sets of samples prepared via different methods. Overall, through this research an attempt has been made to address some relevant questions pertaining to nano-phase heterogeneity in ASDs and provide a molecular level understanding of these complex systems to enable rational formulation design.
32

Scalable Feature Selection and Extraction with Applications in Kinase Polypharmacology

Jones, Derek 01 January 2018 (has links)
In order to reduce the time associated with and the costs of drug discovery, machine learning is being used to automate much of the work in this process. However the size and complex nature of molecular data makes the application of machine learning especially challenging. Much work must go into the process of engineering features that are then used to train machine learning models, costing considerable amounts of time and requiring the knowledge of domain experts to be most effective. The purpose of this work is to demonstrate data driven approaches to perform the feature selection and extraction steps in order to decrease the amount of expert knowledge required to model interactions between proteins and drug molecules.
33

Aerosolized Surfactants: Formulation Development and Evaluation of Aerosol Drug Delivery to the Lungs of Infants

Boc, Susan 01 January 2018 (has links)
The overall aim of this research project was to develop surfactant dry powder formulations and devices for efficient delivery of aerosol formulations to infants using the excipient enhanced growth (EEG) approach. Use of novel formulations and inline delivery devices would allow for more efficient treatment of infants suffering from neonatal respiratory distress syndrome and bronchiolitis. A dry powder aerosol formulation has been developed using the commercial product, Survanta ® (beractant) and EEG technology to produce micrometer-sized hygroscopic particles. Spray drying and formulation parameters were initially determined with dipalmitoylphosphatidylcholine (DPPC, the dominant phospholipid in pulmonary surfactant), which produced primary particles 1 um in size with a mass median aerodynamic diameter of 1-2 um. Investigation of dry powder dispersion enhancers and alcohol concentration on the effect of powder aerosol characteristics were performed with the Survanta-EEG formulation. The optimal formulation consisted of Survanta ® , mannitol and sodium chloride as hygroscopic excipients, and leucine as the dry powder dispersion enhancer, prepared in 20% v/v ethanol/water. The powders produced primary particles of 1 um with >50% of the particles less than 1 um. The presence of surfactant proteins and surface activity were demonstrated with the Survanta-EEG formulation following processing. A novel containment unit dry powder inhaler (DPI) was designed for delivery of the surfactant-EEG formulation using a low volume of dispersion air. Studies explored optimization of air entrainment pathway, inlet hole pattern, delivery tube internal diameter and length. With 3- 10 mg fill masses of spray dried surfactant powder, the DPI enabled delivery of >2 mg using one 3-mL actuation of dispersion air. Overall, it was possible to deliver >85% of the loaded fill mass using three actuations. Nebulized aerosol formulations are characterized with low delivered doses. Using a novel mixer-heater delivery system, the highest estimated percent lung dose achieved during realistic in vitro testing of a Survanta-EEG formulation aerosolized with a commercial mesh nebulizer was when nebulization was synchronized with inhalation of the breathing profile. Design changes to the mixer-heater system eliminated the need for synchronization, achieving an estimated percent lung dose of 31% of the nominal, an improvement compared with existing systems that achieve approximately <2% lung dose.
34

A Molecular-Level View of the Physical Stability of Amorphous Solid Dispersions

Yuan, Xiaoda 01 January 2015 (has links)
Many pharmaceutical compounds being developed in recent years are poorly soluble in water. This has led to insufficient oral bioavailability of many compounds in vitro. The amorphous formulation is one of the promising techniques to increase the oral bioavailability of these poorly water-soluble compounds. However, an amorphous drug substance is inherently unstable because it is a high energy form. In order to increase the physical stability, the amorphous drug is often formulated with a suitable polymer to form an amorphous solid dispersion. Previous research has suggested that the formation of an intimately mixed drug-polymer mixture contributes to the stabilization of the amorphous drug compound. The goal of this research is to better understand the role of miscibility, molecular interactions and mobility on the physical stability of amorphous solid dispersions. Methods were developed to detect different degrees of miscibility on nanometer scale and to quantify the extent of hydrogen-bonding interactions between the drug and the polymer. Miscibility, hydrogen-bonding interactions and molecular mobility were correlated with physical stability during a six-month period using three model systems. Overall, this research provides molecular-level insights into many factors that govern the physical stability of amorphous solid dispersions which can lead to a more effective design of stable amorphous formulations.
35

Investigation of Polymeric Composites for Controlled Drug Release

Yeh, Hsi-wei 01 January 2017 (has links)
The Electrospray (ES) technique is a promising particle generation method for drug delivery due to its capabilities of producing monodisperse PLGA composite particles with unique configurations and high drug encapsulation efficiency. In the dissertation work, the coaxial dual capillary ES was used to generate drug-loaded core-shell PLGA particles to study the effects of particle filling materials, drug loading locations and particle shell thicknesses on the resultant in vitro release behaviors of the hydrophilic and/ or hydrophobic model drugs. Through release profile characterization of drug-loaded PLGA particles (particle size: 400 nm and 1 μm), it was confirmed that the co-encapsulation of Budesonide (BUD, the hydrophobic small-molecule model drug) and Theophylline (THY, the hydrophilic small-molecule model drug) in the particle cores is the most effective drug loading strategy for extended release of the fixed combined BUD and THY. Particles composed of PLGA fillers with lower molecular weights and with greater shell layer thicknesses could release THY in a well controlled fashion. On the other hand, a slower release rate of Bovine Serum Albumin (BSA, the protein model drug) from PLGA particles with greater shell thickness was also observed. Sequential release of BSA and Paclitaxel (PTX, the hydrophobic small-molecule anti-cancer model drug) was achieved by the 400-nm PLGA (Mw: 7,000-17,000 g/mol, LA/GA: 50/50) particles with potential biopharmaceutical applications in cancer therapy.
36

HALO- AND SOLVATO-FLUOROCHROMIC POLYMER NANOASSEMBLIES FOR CANCER THERANOSTICS

Reichel, Derek Alexander 01 January 2017 (has links)
Theranostics is an emerging treatment approach that combines diagnostics with therapy in order to personalize treatment regimens for individual patients and decrease cancer mortality. Previously, nanoparticles entrapping conventional fluorescent dyes were developed for cancer theranostics, but fluorescent nanoparticles did not allow clinicians to significantly improve cancer treatments. The use of fluorescent dyes that are sensitive to solvent acidity (halo-fluorochromism) and polarity (solvato-fluorochromism) may overcome the limitations of fluorescent nanoparticles and improve cancer therapy by enabling researchers to detect chemical properties within the nanoparticle core environment. The model halo- and solvato-fluorochromic dye Nile blue was attached to the core of nanoscale drug delivery systems called polymer nanoassemblies (PNAs), which were created by tethering hydrophilic polymers and hydrophobic groups to a cationic polymer scaffold. The fluorescence of empty PNAs increased by 100% at pH 5.0 compared to pH 7.4, and the fluorescence of drug-loaded PNAs increased up to 300% compared to empty PNAs. A comparison of the fluorochromic properties between PNAs with various core properties indicated that both hydrophobic pendant groups and scaffold amines contributed to the fluorochromism of PNAs. The halo-fluorochromism of PNAs allowed investigators to minimize the detection of fluorescence signals in healthy organs such as the liver. Fluorescence imaging of halo-fluorochromic PNAs diffused into tissue mimics indicated that fluorescence of PNAs in tissues increased by 100% at pH 7.0 compared to pH 7.4. In addition, halo-fluorochromic PNAs identified the acidic perimeter surrounding metastatic tumors in orthotopic metastatic tumor models. Computational simulations of metastatic lesions verified that some halo-fluorochromic PNAs accumulate in the hypoxic/acidic regions of metastatic tumors following intravenous administration. These simulations also indicated that the accumulation of PNAs in the hypoxic regions of tumors doubles at 12 hours post-treatment compared to 1.8 hours post-treatment. The solvato-fluorochromism of PNAs enabled the fluorescence-based measurement of drug release from the nanoassembly core during dialysis-based drug release measurements. Solvato-fluorochromic methods indicated faster drug release rates than HPLC-based methods. Mechanistic modeling of drug release indicated that solvato-fluorochromic methods were unaffected by released drugs that interfered with HPLC-based methods. However, mechanistic modeling also indicated that drug rebinding and diffusion did not account for all of the differences between drug release rates determined by solvato-fluorochromic- and HPLC-based methods. Based on this evidence, it was hypothesized that solvato-fluorochromic drug release methods measure drug diffusion from near the scaffold of PNAs in a small region of the nanoassembly core, and that this process contributes to overall drug release but does not indicate apparent drug release rates for PNAs. In order to develop PNAs for potential clinical applications, ionizable amines were removed from the polymer scaffold to increase drug loading and sustain the release of model drugs carfilzomib and docetaxel. The removal of primary amines decreased drug diffusivity in the core of PNAs (D from 3.9*10-18 cm2/s to 0.1*10-19 cm2/s) and increased the drug release half-life (t1/2 from 4 to 26 hours). The controlled release of carfilzomib from PNAs reduced drug metabolism by 60% for up to one hour and sustained proteasome inhibition in cancer cells at 72 h post-treatment compared to free drug. Overall, this work provides insight into the design of theranostic nanoparticles with beneficial properties for improving cancer treatment.
37

A BIORELEVANT IN VITRO MODEL TO CHARACTERIZE IN VIVO RELEASE OF BONE MORPHOGENETIC PROTEIN-2 (rhBMP-2)

BISWAS, DEBLINA 01 January 2017 (has links)
Biorelevant in vitro release/dissolution tests are designed to predict the in vivo behavior of a drug and are crucial in understanding its in vivo performance. Currently, there is no standardized compendial in vitro release testing methods or regulatory guidance’s for release/dissolution testing of implants due to their complex physiological locations.Furthermore, existing compendial methods do not capture the local release profile of ‘novel’ parenterals in physiological low fluid volume surrounding areas. Long acting and in situ forming implants with orthobiologic proteins and peptides have increased over the past few decades due to a better understanding of genetic engineering. One of these products, INFUSE® Bone Graft (Medtronics, MN, USA), is an implant which helps in bone regeneration at the trauma site and is comprised of a) an absorbable collagen sponge (ACS) and b) recombinant human bone morphogenetic protein-2 (rhBMP-2). INFUSE® Bone Graft is an FDA approved product for acute, open shaft tibial fractures, lumbar spinal fusions and sinus or ridge augmentations in the jaws. The evaluation of implant products such as INFUSE® Bone Graft requires a good understanding of local and systemic release in vivo in order to ensure safe, effective, and predictable product performance. The primary goal of this study is to develop a predictive ‘biorelevant’ release model, which factors in clinically relevant physiological parameters suitable for studying and effectively predicting extended release of implants, using INFUSE Bone Graft® as our model implant. A novel biorelevant in vitro model was designed and tested. The model was observed to be discriminatory between two different carrier formulations of rhBMP-2 using a model independent approach - similarity factor (f2). Additionally, a high throughput assay to quantify rhBMP-2 release using high performance liquid chromatography with UV/VIS detection was also developed and validated. Successful completion of this study facilitated an in vitro release study design that incorporated the complex biorelevant parameters of implant dosage forms, the model will offer crucial insights into biological performance, and aid in developing methods to characterize release of other similar dosage forms.
38

INVESTIGATION OF FACTORS INFLUENCING PROTEIN STABILITY IN LYOPHILIZED FORMULATIONS USING SOLID-STATE NMR SPECTROSCOPY

Lay-Fortenbery, Ashley 01 January 2019 (has links)
Many proteins are unstable in solution and must be formulated in the solid state. This has led to an increase in the use of lyophilized dosage forms. Lyophilization is a complicated processing method consisting of three major steps: freezing, primary drying, and secondary drying. This can lead to several formulation stability challenges including changes in ionization within the matrix, phase separation of the protein drug from added stabilizers, sufficient mobility within the system for movement of reactive species and protein side chains, and crystallization of excipients upon storage. Solid-State Nuclear Magnetic Resonance Spectroscopy (SSNMR) is used to characterize many important properties of lyophilized formulations including crystalline vs. amorphous content, polymorphic form, ionization profile, interaction between formulation components with domain sizes, and mobility within the cake matrix. In order to study ionization changes in lyophilized solids, SSNMR and UV/Vis Diffuse Reflectance spectroscopy were used. 13C-labeled fumaric, succinic, and butyric acids were added to formulations at various pH levels, and were used to quantify change in the ionization of the matrix by monitoring the ionization ratios of the carboxylic acid peaks using SSNMR. pH indicators were also added to the formulations and their ionization ratio was determined using UV/Visible Diffuse Reflectance Spectroscopy. The ionization profile in the solid state was compared with that in solution before lyophilization. A rank ordering of ionization shift was made in pharmaceutically relevant buffers. SSNMR proton relaxation times (1H T1 and 1H T1rho) for each formulation component can be compared to determine homogeneity within the lyophilized matrix. The concept of spin diffusion is used in order to determine the length scale on which the components are either homogeneous or phase separated. The domain size is typically 20-50 nm or 2-10 nm for 1H T1 and 1H T1rho, respectively. PVP and dextran polymers were phase separated on both domains for physical mixtures and lyophilized mixtures. BSA and lysozyme were both lyophilized with formulations containing sucrose, trehalose, or mannitol as the stabilizer. Mannitol crystallized, and the relaxation times showed phase separation. Sucrose and trehalose both formed homogeneous systems at both length scales when formulated in a 1:1 ratio with BSA or lysozyme. Aspartame was shown to be phase separated from trehalose. The SSNMR proton relaxation times were also used to measure the local mobility in the lyophilized matrix, as a timescale of picoseconds to nanoseconds is associated with the 1H T1 relaxation time. Mobility was monitored in formulations containing a fixed amount of sucrose and mannitol, but with a variable amount of an IgG2 protein. The 1H T1 relaxation times decreased as protein content increased. The formulations with the highest relaxation time (lowest mobility), was the most stable in accelerated temperature conditions as monitored by size exclusion chromatography and capillary isoelectric focusing. This method can be used to rank order the most stable formulations at time-zero. Anti-plasticization was also studied by formulating sorbitol in various ratios with trehalose. The 1H T1 relaxation times increased with increasing sorbitol content, while the glass transition temperature decreased. Sorbitol and trehalose glasses were also exposed to different temperature storage conditions. Sorbitol appears to promote aging, as the formulations with higher sorbitol content showed larger increases in proton relaxation time.
39

EXPLORATION OF THE SRX-PRX AXIS AS A SMALL-MOLECULE TARGET

Mishra, Murli 01 January 2016 (has links)
Lung cancer is a leading cause of cancer-related mortality irrespective of gender. The Sulfiredoxin (Srx) and Peroxiredoxin (Prx) are a group of thiol-based antioxidant proteins that plays an essential role in non-small cell lung cancer. Understanding the molecular characteristics of the Srx-Prx interaction may help design the strategies for future development of therapeutic tools. Based on existing literature and preliminary data from our lab, we hypothesized that the Srx plays a critical role in lung carcinogenesis and targeting the Srx-Prx axis or Srx alone may facilitate future development of targeted therapeutics for prevention and treatment of lung cancer. First, we demonstrated the oncogenic role of Srx in urethane-induced lung carcinogenesis in genetically modified FVB mice. The Srx-null mice showed resistance to urethane-induced lung cancer. Second, we demonstrated the Srx and Prx sites important for Srx-Prx interaction. The orientation of this arm is demonstrated to cause some steric hindrance for the Srx-Prx interaction as it substantially reduces the rate of association between Srx and Prx. Finally, we carried out virtual screening to identify molecules that can successfully target Srx-Prx interaction. Multiple in-silico filters were used to minimize the number of chemicals to be tested. We identified ISO1 as an inhibitor of the Srx-Prx interaction. KD value for Srx-ISO1 interaction is calculated to be 42 nM. Together, these data helps to identify an inhibitor (ISO1) of the Srx-Prx interaction that can be further pursued to be developed as a chemotherapeutic tool.
40

THE PHARMACOKINETICS OF METAL-BASED ENGINEERED NANOMATERIALS, FOCUSING ON THE BLOOD-BRAIN BARRIER

Dan, Mo 01 January 2013 (has links)
Metal-based engineered nanomaterials (ENMs) have potential to revolutionize diagnosis, drug delivery and manufactured products, leading to greater human ENM exposure. It is crucial to understand ENM pharmacokinetics and their association with biological barriers such as the blood-brain barrier (BBB). Physicochemical parameters such as size and surface modification of ENMs play an important role in ENM fate, including their brain association. Multifunctional ENMs showed advantages across the highly regulated BBB. There are limited reports on ENM distribution among the blood in the brain vasculature, the BBB, and brain parenchyma. In this study, ceria ENM was used to study the effect of size on its pharmacokinetics. Four sizes of ceria ENMs were studied. Five nm ceria showed a longer half-life in the blood and higher brain association compared with other sizes and 15 and 30 nm ceria had a higher blood cell association than 5 or 55 nm ceria. Because of the long circulation and high brain association of 5 nm ceria compared with other sizes, its distribution between the BBB and brain parenchyma was studied. The in situ brain perfusion technique showed 5 nm ceria (99%) on the luminal surface of the BBB rather than the brain parenchyma. For biomedical applications in the central nervous system (CNS), it is vital to develop stable and biocompatible ENMs and enhance their uptake by taking advantage of their unique properties. Cross-linked nanoassemblies entrapping iron oxide nanoparticles (CNA-IONPs) showed controlled particle size in biological conditions and less toxicity in comparison to Citrate-IONPs. CNA-IONPs considerably enhanced MRI T2 relaxivities and generated heat at mild hyperthermic temperatures (40 ~ 42°C) in the presence of alternating magnetic field (AMF). Numerous researchers showed mild whole body hyperthermia can increase BBB permeability for potential brain therapeutic application. Compared to conventional hyperthermia, AMF-induced hyperthermia increased BBB permeability with a shorter duration of hyperthermia and lower temperature, providing the potential to enhance IONP flux across the BBB with reduced toxicity. Overall, ENMs with optimized physicochemical properties can enhance their flux across the BBB into the brain with desirable pharmacokinetics, which provide great potential for diagnosis and therapy in the CNS.

Page generated in 0.0998 seconds