• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 70
  • 70
  • 70
  • 35
  • 24
  • 24
  • 23
  • 19
  • 15
  • 12
  • 12
  • 11
  • 10
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Inhibition of Oxidative and Conjugative Metabolism of Buprenorphine Using Generally Recognized As Safe (GRAS) Compounds or Components of Dietary Supplements

Maharao, Neha V 01 January 2017 (has links)
This dissertation aimed at developing an inhibitor strategy to improve the oral bioavailability (Foral) and systemic exposure (AUC∞) of buprenorphine (BUP) as well as reduce the variability associated with them. Twenty-seven generally recognized as safe (GRAS) compounds or dietary substances were evaluated for their potential to inhibit the oxidative and conjugative metabolism of BUP, using pooled human intestinal and liver microsomes. In both the organs, oxidation appeared to be the major metabolic pathway with a 6 fold (intestine) and 4 fold (liver) higher intrinsic clearance than glucuronidation. Buprenorphine was predicted to show low and variable Foral, AUC∞, and a large total clearance. The biorelevant solubilities of 5 preferred inhibitors were incorporated in the final model. An inhibitor dosing strategy was identified to increase Foral and reduce the variability in oral BUP AUC∞. These results demonstrate the feasibility of the approach of using GRAS or dietary compounds to inhibit the presystemic metabolism of buprenorphine and thus improve its oral bioavailability. This inhibitor strategy has promising applicability to a variety of drugs suffering from low and variable oral bioavailability due to extensive presystemic oxidative and conjugative metabolism.
12

INVESTIGATION OF PHENYLEPHRINE SULFATION AND INHIBITION USING A NOVEL HILIC ASSAY METHOD

Shah, Heta N 01 January 2015 (has links)
Phenylephrine (PE) is the most commonly used over-the-counter nasal decongestant. The problem associated with phenylephrine is that it undergoes extensive first pass metabolism in the intestinal gut wall leading to its poor and variable oral bioavailability. This research project aims at developing strategies in order to increase the oral bioavailability of PE by co-administration of GRAS compounds. A HILIC assay method was developed to detect the parent drug, phenylephrine (PE) and its sulfate metabolite (PES).The enzyme kinetic studies were done with phenolic dietary or GRAS compounds using LS180 human intestinal cell model, recombinant SULT enzymes and human intestinal cytosol (HIC). From the screening studies done, one inhibitor was selected in order to study the mechanism of inhibition. In conclusion the studies done in vitro provided a basis in order to predict in vivo intrinsic clearance through the sulfation pathway.
13

Cytotoxic Effects of Ruthenium Compounds on Human Cancer Cell Lines.

Brown, Katie Beth 13 December 2008 (has links)
Chemotherapy is the most common cancer treatment. Traditionally, platinum-based drugs are used in chemotherapy. More recently, researchers have focused on ruthenium based compounds as a substitute for the platinum compounds. Ruthenium-based compounds appear to be less toxic to healthy cells than traditional platinum-based compounds. In this study, 7 ruthenium-based compounds were tested on HT-29 (colon) and MCF-7 (breast) human cancer cell lines with the specific aim of determining whether or not any of the ruthenium-based compounds exhibited cytotoxic properties. In addition, levels of vascular endothelial growth factor (VEGF) production were tested in supernate from the cancer cells treated with various ruthenium-based compounds to determine whether or not the ruthenium-based compounds had an effect their VEGF production. Our results indicate that none of the ruthenium based compounds tested had a cytotoxic effect on the cancer cell lines; however, some of the compounds did exhibit inhibition of cell growth. Results further indicate an initial decrease in VEGF production in the cell lines treated with the ruthenium compounds but that this effect was compound-cell line specific.
14

An Investigation into Formulation and Therapeutic Effectiveness of Nanoparticle Drug Delivery for Select Pharmaceutical Agents

Cooper, Dustin 01 May 2016 (has links)
Drug based nanoparticle (NP) formulations have gained considerable attention over the past decade for their use in various drug delivery systems. NPs have been shown to increase bioavailability, decrease side effects of highly toxic drugs, and prolong drug release. Furthermore, polymer based, biodegradable nanodelivery has become increasing popular in the field of NP formulation because of their high degree of compatibility and low rate of toxicity. Due to their popularity, commercially available polymers such as poly lactic acid (PLA), poly glycolic acid (PGA) and polylactic-co-glycolic acid (PLGA) are commonly used in the development and design of new nano based delivery systems. Nonsteriodal anti-inflammatory drugs (NSAIDs) are commonly used for the treatment of pain and inflammation. NSAIDs such as diclofenac and celecoxib function by blocking cyclooxygenase expression and reducing prostaglandin synthesis. Unfortunately, the pharmacological actions of NSAIDs can lead to the development of several adverse side effects such as gastrointestinal ulceration and bleeding. The aim of this study was to formulate and optimize diclofenac or celecoxib entrapped polymer NPs using an emulsion-diffusion-evaporation technique. NP formulations were evaluated based on specific formula parameters such as particle size, zeta potential, morphology, and entrapment efficiency. Effects of stabilizer type, stabilizer concentration, centrifugal force, drug amount, and/or emulsifier (lecithin) on nanoparticle characterization were examined for formula optimization. Results of the formulation studies showed that NPs developed using polylactide-co-glycolide (PLGA) polymers and the stabilizer didodecyldimethylammonium bromide (DMAB) demonstrated enhanced stability, drug entrapment, and reduced particle size. These findings demonstrate an effective method for polymer NP formulation of diclofenac or celecoxib. Furthermore, the results reported herein support a novel method of drug delivery that may function to reduce known adverse effects of these pharmacotherapeutic agents.
15

DESIGN AND ANALYSIS OF CURCUMIN CONJUGATED POLY(BETA-AMINO ESTER) NETWORKS FOR CONTROLLED RELEASE IN OXIDATIVE STRESS ENVIRONMENTS

Jordan, Carolyn T. 01 January 2018 (has links)
Oxidative stress, the imbalance of free radical generation with antioxidant defenses, leads to cellular inflammation, apoptosis and cell death. This compromised environment results in debilitating diseases, such as oral mucositis (OM), atherosclerosis, and ischemia/reperfusion injury. Antioxidant therapeutics has been a proposed strategy to ameliorate these imbalances and maintain homeostatic environments. However, the success of these approaches, specifically curcumin, has been limited due to characteristics such as hydrophobicity and high reactivity when released as bolus doses to contest to oxidative stress induced diseases. The development of a controlled release system to aid in protection of the antioxidant capacity of curcumin, as well as a tunable system to aid in proper rate of release for disease can overcome these limitations. Previously, the use of a poly(beta-amino ester) (PBAE) chemistry has been developed in Dziubla and Hilt laboratories to provide desirable properties. The dynamic mechanical analysis and efficacy in cellular protection has been studied, yet the sensitivity and responsiveness of these polymers to abnormal environments found within oxidative stress compromised environments are unknown. In this work, a series of networks were comprised of different molar ratios of modified acrylated curcumin, poly(ethylene glycol) diacrylate, and a primary diamine crosslinker to create tunable hydrolytically degradable crosslinked hydrogels. I hypothesized a consumption rate difference of free curcumin and curcumin as a released product from the crosslinked network in the presence of a free radical generating system. After the consumption profiles of each were reported differently, the experimental data was translated into a kinetic rate model to identify quantitative consumption rate parameters of curcumin and active film degradation products. The effect on the released products arose the question of curcumin consumption in other oxidizing environments. These networks were then investigated in low concentrations of a hydrogen peroxide insult, and interestingly showed sensitivity to hydrolysis by recovering significantly more curcumin at an accelerated rate of release. Identifying the sensitivity of these tunable networks to environmental stimuli, they were then presented to a series of low pH environments, which significantly reduced the degradation time, finding a dependence of rate of release on the weight loading of curcumin present within the film. To translate these responsive materials to an application-based system, the curcumin conjugated PBAE polymers were investigated as an oral rinse drug delivery system for the treatment of radiation-induced OM in a hamster model. Radiation-induced OM onset and severity was reduced with a 20 wt% microparticle loaded mucoadhesive system that releases curcumin over 24 hours, providing promising results of a therapeutic effect from curcumin when incorporated in to a controlled release delivery system. Overall, curcumin conjugated PBAE polymers show selectivity of hydrolysis in abnormal environments related to oxidative stress. This information is beneficial to the proper design and loading of antioxidant therapeutics within crosslinked polymers, giving the ability to tune release to treat and deliver based on the environment’s insult. This can advance the potential use for antioxidant therapeutics in pharmaceutical applications in the future.
16

TOWARDS THE RATIONAL DESIGN AND APPLICATION OF POLYMERS FOR GENE THERAPY: INTERNALIZATION AND INTRACELLULAR FATE

Mott, Landon Alexander 01 January 2019 (has links)
Gene therapy is an approach for the treatment of acquired cancers, infectious disease, degenerative disease, and inherited genetic indications. Developments in the fields of immunotherapies and CRISPR/Cas9 genome editing are revitalizing the efforts to move gene therapy to the forefront of modern medicine. However, slow progress and poor clinical outcomes have plagued the field due to regulatory and safety concerns associated with the flagship delivery vector, the recombinant virus. Immunogenicity and poor transduction in certain cell types severely limits the utility of viruses as a delivery agent of nucleic acids. As a result, significant efforts are being made to develop non-viral delivery systems that perform mechanistically similarly to viral delivery but lack immunogenic factors. Though safer, existing agents lack the efficacy inherent in the natural design of viral vectors. Clinical relevance of non-viral vectors will therefore depend on the ability to engineer optimized systems for cellular delivery in physiological environments. Progress in non-viral vector design for gene delivery requires a deep understanding of the various barriers associated with nucleic acid delivery, including cell surface interaction, internalization, endosomal escape, cytosolic transport, nuclear localization, unpackaging, etc. Further, it requires a knowledge of vector design properties (surface chemistry, charge, size, shape, etc.) and how these physical parameters affect interactions with the cellular environment. Of these interactions, charge is shown to govern how particles are internalized and subsequently processed, thereby affecting the intracellular fate and efficacy of delivery. Charge also affects the in-serum stability where negative zeta potential improves stability and circulation time. Therefore, it is important to understand the effects of polyplex charge and other parameters on the internalization and intracellular fate of polyplexes for gene therapy. In chapter 2, studies are performed to delineate the effects of polyplex charge on the cellular internalization and intracellular processing of polymer-mediated gene delivery. Charge is shown to affect the endocytic pathway involved in internalization, and the caveolin-dependent and macropinocytosis pathways lead to higher gene delivery efficacy, likely due to avoidance of acidified compartments such as late endosomes and lysosomes. In chapters 3-4, novel nanoparticles carrying DNA, RNA, and antioxidants are assessed for therapeutic effect with an emphasis on studying the internalization mechanisms and resulting effect on efficacy. Novel RNA delivery agents are shown to benefit from EGFR-targeting aptamer and nanoceria/PEI hybrids are demonstrated to provide simultaneous antioxidant and gene therapy. Finally, chapter 5 demonstrates the use of silencing RNA and CRISPR/Cas9 genome editing to study the prevalence of gene targets in vivo. The overall goal of this work is to contribute to the design and application of novel nanoparticles for gene delivery and offer insight into the engineering of novel polyplexes. It remains clear that route of internalization is key to successful gene delivery, and designing polyplexes to enter through non-acidified endocytic pathways is highly beneficial to transgene expression. This can be achieved through incorporation of surface chemistries that trigger internalization through targeted pathways and is the source of further work in the lab.
17

Pharmacokinetic and Pharmacodynamic Evaluation of Cocaine Hydrolases for the Treatment of Cocaine Overdose and Cocaine Addiction Using Rodent Models

Zheng, Xirong 01 January 2019 (has links)
Overdose and addiction are two medical complications of cocaine abuse. To date, there is no FDA approved pharmacotherapy specific for cocaine abuse. Cocaine hydrolases (CocHs) have been extensively investigated for its potential in anti-cocaine therapy. Previous studies have demonstrated that CocHs efficiently hydrolyze cocaine to generate biologically inactive metabolites both in vivo and in vitro. However, it has not been studied whether there is gender difference in the therapy using CocHs. In addition, the effectiveness of CocHs is unknown for treating cocaine toxicity when alcohol is co-administered. The main purpose of this dissertation is to characterize and evaluate efficient CocHs for cocaine overdose and cocaine addiction treatment. In the first set of studies, the effectiveness of human serum albumin-fused CocH1 were studied in male and female rats. The pharmacokinetic profiles, as well as the pharmacodynamic effects of CocH1-HSA were compared in male and female rats. The obtained data clearly demonstrated that CocH1-HSA was equally effective in both genders. The second set of studies investigated the efficiency of Fc-fused CocH5 in reversing cocaine toxicity in rats receiving simultaneous administration of cocaine and alcohol. Results showed that CocH5-Fc rapidly hydrolyzed cocaine and cocaine’s toxic metabolites in rats, and demonstrated that CocH5-Fc was efficient in treating cocaine toxicity when alcohol was simultaneously administered. In later studies to investigate the effects of CocH5-Fc for the treatment of cocaine addiction, a mathematical model was developed and validated to predict the effects of CocH5-Fc on the disposition of cocaine in rat blood and brain. This model adequately described the effects of CocH5-Fc in accelerating the elimination of cocaine and its toxic metabolites in both rat blood and brain. In conclusion, the studies within the current dissertation demonstrate the clinical potential of CocHs for the treatment of both cocaine overdose and cocaine addiction.
18

COMPUTATIONAL MODELING, DESIGN, AND CHARACTERIZATION OF COCAINE-METABOLIZING ENZYMES FOR ANTI-COCAINE MEDICATION

Fang, Lei 01 January 2013 (has links)
Cocaine is a widely abused and addictive drug, resulting in serious medical and social problems in modern society. Currently, there is no FDA-approved medication specific for cocaine abuse treatment. The disastrous medical and social consequences of cocaine abuse have made the development of an anti-cocaine medication a high priority. However, despite decades of efforts, traditional pharmacodynamic approach has failed to yield a truly useful small-molecule drug due to the difficulties inherent in blocking a blocker like cocaine without affecting the normal functions of the transporters or receptors. An alternative approach, i.e. pharmacokinetic approach, is to interfere with the delivery of cocaine to its receptors/transporters and/or accelerate its metabolism in the body. It would be an ideal anti-cocaine medication to accelerate cocaine metabolism producing biologically inactive metabolites. Two natural enzymes may catalyze hydrolysis of cocaine: human butyrylcholinesterase (BChE) and bacterial cocaine esterase (CocE). However, the wild-type enzymes are not suitable as anti-cocaine therapeutics, due to the low catalytic activity, thermoinstability, or short biological half-life. In this investigation, we performed integrated computational-experimental studies to rationally design and discover mutants of these enzymes in order to improve the catalytic activity, thermostability, and/or biological half-life. To rationally design desirable mutants of the enzymes, we have successfully developed computational models, including those for BChE gating, glycosylated BChE structure, BChE-substrate complex structures, BChE dimer/tetramer structures, CocE monomer/dimer structures, and CocE-substrate complex structures. Development of the computational models enabled us to rationally design new amino-acid mutations that may improve the catalytic activity, thermostability, and/or prolonged biological half-life. The computational design was followed by wet experimental tests, including both in vitro and in vivo experiments, leading to discovery of new enzyme forms with not only a high catalytic efficiency against cocaine, but also an improved thermostability and/or prolonged biological half-life. The identified new mutants of BChE and CocE are expected to be valuable candidates for development of a more efficient enzyme therapy for cocaine abuse. The encouraging outcomes of the present study also suggest that the structure-and-mechanism-based design and integrated computational-experimental approach is promising for rational drug design and discovery.
19

HIGH-ACTIVITY MUTANTS OF HUMAN BUTYRYLCHOLINESTERASE FOR COCAINE ABUSE TREATMENT

Xue, Liu 01 January 2013 (has links)
Cocaine is a widely abused drug without an FDA-approved medication. It has been recognized as an ideal anti-cocaine medication to accelerate cocaine metabolism producing biologically inactive metabolites via a route similar to the primary cocaine-metabolizing pathway, i.e. butyrylcholinesterase (BChE)-catalyzed hydrolysis. However, the native BChE has a low catalytic activity against cocaine. We recently designed and discovered a set of BChE mutants with a high catalytic activity specifically for cocaine. An ideal, therapeutically valuable mutant of human BChE should have not only a significantly improved catalytic activity against cocaine, but also certain selectivity for cocaine over neurotransmitter acetylcholine (ACh) such that one would not expect systemic administration of the BChE mutant to interrupt cholinergic transmission. Through integrated computational-experimental studies, several BChE mutants were identified to have not only a considerably improved catalytic efficiency against cocaine, but also the desirable selectivity for cocaine over ACh. Representative BChE mutants have been confirmed to be potent in actual protection of mice from acute toxicity (convulsion and lethality) of a lethal dose of cocaine (180 mg/kg, LD100). Pretreatment with the BChE mutant (i.e. 1 min prior to cocaine administration) dose-dependently protected mice against cocaine-induced convulsions and lethality. The in vivo data reveal the primary factor, i.e. the relative catalytic efficiency, determining the efficacy in practical protection of mice from the acute cocaine toxicity and future direction for further improving the efficacy of the enzyme in the cocaine overdose treatment. For further characterization in animal models, we successfully developed high-efficiency stable cell lines efficiently expressing the BChE mutants by using a lentivirus-based repeated-transduction method. The large-scale protein production enabled us to further characterize the in vivo profiles of the BChE mutant concerning the biological half-life and potency in accelerating cocaine clearance. In particular, it has been demonstrated that the BChE mutant can rapidly metabolize cocaine and completely eliminate cocaine-induced hyperactivity in rodents, implying that the BChE mutant may be developed as a promising therapeutic agent for cocaine abuse treatment.
20

HUMAN BUTYRYLCHOLINESTERASE MUTANTS FOR COCAINE DETOXIFICATION

Hou, Shurong 01 January 2014 (has links)
Cocaine is one of the most reinforcing drugs of abuse and has caused serious medical and social problems. There is no FDA-approved medication specific for cocaine. It is of a high priority to develop an effective therapeutic treatment for cocaine abuse. Human butyrylcholinesterase (BChE) has been recognized as a promising candidate of enzyme therapy to metabolize cocaine into biologically inactive metabolites and prevent it from reaching central nervous system (CNS). However, the catalytic activity of wide-type human BChE against cocaine is not sufficiently high for treatment of cocaine abuse. Dr. Zhan’s lab has successfully designed and discovered a series of high-activity mutants of human BChE specific for cocaine metabolism. This dissertation is mainly focused to address the possible concerns in further development of promising human BChE mutants for cocaine detoxification, including whether the administration of this exogenous enzyme will affect the cholinergic system, whether it can efficiently hydrolyze cocaine’s toxic metabolites, and whether the commonly used therapeutic agents will significantly affect the catalytic activity of the BChE mutants against cocaine when they are co-administered. According to the results obtained, all of the examined BChE mutants have a considerably improved catalytic efficiency against (-)-cocaine, without significantly improving the catalytic efficiency against any of the other examined substrates, including neurotransmitter acetylcholine. Two representative mutants (including E12-7) also have a considerably improved catalytic activity against cocaethylene (formed from combined use of cocaine and alcohol) compared to wild-type BChE, and E12-7 can rapidly metabolize cocaethylene, in addition to cocaine, in rats. Further evaluation of possible drug-drug interactions between E12-7 and some other commonly used therapeutic agents revealed that all of the examined agents, except some tricyclic antidepressants, do not significantly inhibit E12-7. In addition, an effort to discover new mutants with further improved activity against cocaine led to the discovery of a new BChE mutant, denoted as E20-7, according to both the in vitro and in vivo assays. The encouraging outcomes of the present investigation suggest that it is possible to develop a more effective enzyme therapy for cocaine abuse treatment using one of the most promising BChE mutants, such as E12-7 or E20-7.

Page generated in 0.1007 seconds