Spelling suggestions: "subject:"phase space"" "subject:"phase apace""
91 |
Discrete algebra and geometry applied to the Pauli group and mutually unbiased bases in quantum information theory / Algèbre et géométrie discrètes appliquées au groupe de Pauli et aux bases décorrélées en théorie de l’information quantiqueAlbouy, Olivier 12 June 2009 (has links)
Pour d non puissance d’un nombre premier, le nombre maximal de bases deux à deux décorrélées d’un espace de Hilbert de dimension d n’est pas encore connu. Dans ce mémoire, nous commençons par donner une construction de bases décorrélées en lien avec une famille de représentations irréductibles de l'algèbre de Lie su(2) et faisant appel aux sommes de Gauss.Puis nous étudions de façon systématique la possibilité de construire de telle bases au moyen des opérateurs de Pauli. 1) L’étude de la droite projective sur Zdm montre que, pour obtenir des ensembles maximaux de bases décorrélées à l’aide d'opérateurs de Pauli, il est nécessaire de considérer des produits tensoriels de ces opérateurs. 2) Les sous-modules lagrangiens de Zd2n, dont nous donnons une classification complète, rendent compte des ensembles maximalement commutant d'opérateurs de Pauli. Cette classification permet de savoir lesquels de ces ensembles sont susceptibles de donner des bases décorrélées : ils correspondent aux demi-modules lagrangiens, qui s'interprètent encore comme les points isotropes de la droite projective (P(Mat(n, Zd)²),ω). Nous explicitons alors un isomorphisme entre les bases décorrélées ainsi obtenues et les demi-modules lagrangiens distants, ce qui précise aussi la correspondance entre sommes de Gauss et bases décorrélées. 3) Des corollaires sur le groupe de Clifford et l’espace des phases discret sont alors développés.Enfin, nous présentons quelques outils inspirés de l’étude précédente. Nous traitons ainsi du rapport anharmonique sur la sphère de Bloch, de géométrie projective en dimension supérieure, des opérateurs de Pauli continus et nous comparons l'entropie de von Neumann à une mesure de l'intrication par calcul d'un déterminant. / For d not a power of a prime, the maximal number of mutually unbiased bases (MUBs) in a d-dimensional Hilbert space is still unknown. In this thesis, we begin by an original building of MUBs by means of Gauss sums, in relation with a family of irreducible representations of the Lie algebra su(2).Then, we sytematically study the possibility of building such bases by means of Pauli operators. 1) The study of the projective line on Zdm shows that, in order to obtain maximal sets of MUBs, tensorial products of these operators are in order. 2) Lagrangian submodules of Zd2n, of which we give a complete classification, account for maximally commuting sets of Pauli operators. This classification enables to know which of these sets are likely to yield unbiased bases. They correspond to Lagrangian half-modules that can be interpreted as the isotropic points of the projective line (P(Mat(n, Zd)²),ω). Hence, we establish an isomorphism between the unbiased bases thus obtained and distant Lagrangian half-modules, which precises by the way the correspondance between Gauss sums and MUBs. 3) Corollaries on the Clifford group and the finite phase space are then developed.Finally, we present some tools inspired by the previous study. We deal with the cross-ratio on the Bloch sphere and projective geometry in higher dimension, Pauli operators with continuous exponents and we compare von Neumann entropy with a determinantal measure of entanglement
|
92 |
Ultrafast spin dynamics in ferromagnetic thin films / Dynamique ultra-rapide de spin dans des films ferromagnétiquesHurst, Jerome 17 May 2017 (has links)
Dans cette thèse, on s’intéresse à l'étude théorique et à la simulation numérique de la dynamique de charges et de spins dans des nano-structures métalliques. Ces dernières années la physique des nano-structures métalliques à connu un intérêt croissant, aussi bien d'un point de vue de la physique fondamental que d'un point de vue des applications technologiques. Il est donc essentiel d'avoir des modèles théoriques nous permettant de décrire correctement ce type d'objets. Cette thèse comporte deux études distinctes. Dans un premier temps on utilise un modèle semi-classique dans l'espace des phases afin d'étudier la dynamique de charges et de spins dans des films ferromagnétiques(Nickel). On décrit dans le même modèle le magnétisme itinérant et le magnétisme localisé. On montre qu'il est possible, en excitant le système avec un laser pulsé femtoseconde dans le domaine du visible, de créer un courant de spin oscillant dans la direction normal du film sur des temps ultrarapides(femtoseconde). Dans un second temps on s’intéresse à la dynamique de charge d'électrons confinés dans des nano-particules d'Or ou bien encore par des potentiels anisotropes. On montre que de telles systèmes sont des candidats intéressant pour faire de la génération d'harmoniques. / In this thesis we focus on the theoritical description and on the numerical simulation of the charge and spin dynamics in metallic nano-structures. The physics of metallic nano-structures has stimulated a huge amount of scientific interest in the last two decades, both for fundamental research and for potential technological applications. The thesis is divided in two parts. In the first part we use a semiclassical phase-space model to study the ultrafast charge and spin dynamics in thin ferromagnetic films (Nickel). Both itinerant and localized magnetism are taken into account. It is shown that an oscillating spin current can be generated in the film via the application of a femtosecond laser pulse in the visible range. In the second part we focus on the charge dynamics of electrons confined in metallic nano-particles (Gold) or anisotropic wells. We show that such systems can be used for high harmonic generation.
|
93 |
Analyse de la dynamique des séries temporelles multi-variées pour la prédiction d’une syncope lors d’un test d’inclinaison / Dynamical analysis of mutivariate time series for the early detection of syncope during Head-Up tilt testKhodor, Nadine 22 December 2014 (has links)
La syncope est une perte brusque de conscience. Bien qu'elle ne soit pas généralement mortelle, elle présente un impact économique sur le système de soins et sur la vie personnelle de personnes en souffrant. L'objet de la présente étude est de réduire la durée du test clinique (environ 1 heure) et d'éviter aux patients de développer une syncope en la prédisant. L'ensemble de travail s'inscrit dans une démarche de datamining associant l'extraction de paramètres, la sélection des variables et la classification. Trois approches complémentaires sont proposées, la première exploite des méthodes d'analyse non-linéaires de séries temporelles extraites de signaux acquises pendant le test, la seconde s'intéresse aux relations cardiovasculaires en proposant des indices dans le plan temps-fréquence et la troisième, plus originale, prendre en compte leurs dynamiques temporelles. / Syncope is a sudden loss of consciousness. Although it is not usually fatal, it has an economic impact on the health care system and the personal lives of people suffering. The purpose of this study is to reduce the duration of the clinical test (approximately 1 hour) and to avoid patients to develop syncope by early predicting the occurrence of syncope. The entire work fits into a data mining approach involving the feature extraction, feature selection and classification. 3 complementary approaches are proposed, the first one exploits nonlinear analysis methods of time series extracted from signals acquired during the test, the second one focuses on time- frequency (TF) relation between signals and suggests new indexes and the third one, the most original, takes into account their temporal dynamics.
|
94 |
Transverse electron beam dynamics in the beam loading regimeKöhler, Alexander 11 July 2019 (has links)
GeV electron bunches accelerated on a centimeter scale device exemplify the extraordinary advances of laser-plasma acceleration. The combination of high charges from optimized injection schemes and intrinsic femtosecond short bunch duration yields kiloampere peak currents. Further enhancing the current while reducing the energy spread will pave the way for future application, e.g. the driver for compact secondary radiation sources such as high-field THz, high-brightness x-ray or gamma-ray sources. One essential key for beam transport to a specific application is an electron bunch with high quality beam parameters such as low energy spread as well as small divergence and spot size. The inherent micrometer size at the plasma exit is typically sufficient for an efficient coupling into a conventional beamline. However, energy spread and beam divergence require optimization before the beam can be transported efficiently. Induced by the high peak current, the beam loading regime can be used in order to achieve optimized beam parameters for beam transport. / In this thesis, the impact of beam loading on the transverse electron dynamic is systematically studied by investigating betatron radiation and electron beam divergence. For this reason, the bubble regime with self-truncated ionization injection (STII) is applied to set up a nanocoulomb-class laser wakefield accelerator. The accelerator is driven by 150TW laser pulses from the DRACO high power laser system. A supersonic gas jet provides a 3mm long acceleration medium with electron densities from 3 × 10^18 cm^−3 to 5 × 10^18 cm^−3. The STII scheme together with the employed setup yields highly reproducible injections with bunch charges of up to 0.5 nC. The recorded betatron radius at the accelerator exit is about one micron and reveals that the beam size stays at the same value. The optimal beam loading, which is observed at around 250 pC to 300 pC, leads to the minimum energy spread of ~40MeV and a 20% smaller divergence. It is demonstrated that an incomplete betatron phase mixing due to the small energy spread can explain the experimentally observed minimum beam divergence.
|
95 |
Statistical mechanics of time-periodic quantum systemsWustmann, Waltraut 21 May 2010 (has links)
The asymptotic state of a quantum system, which is in contact with a heat bath, is strongly disturbed by a time-periodic driving in comparison to a time-independent system. In this thesis an extensive picture of the asymptotic state of time-periodic quantum systems is drawn by relating it to the structure of the corresponding classical phase space. To this end the occupation probabilities of the Floquet states are analyzed with respect to their semiclassical property of being either regular or chaotic. The regular Floquet states are occupied with exponential weights e^{-betaeff Ereg} similar to the canonical weights e^{-beta E} of time-independent systems. The regular energies Ereg are defined by the quantization of the time-periodic system, whose classical properties also determine the effective temperature 1/betaeff. In contrast, the chaotic Floquet states acquire almost equal probabilities, irrespective of their time-averaged energy.
Beyond these semiclassical properties the existence of avoided crossings in the spectrum is an intrinsic quantum property of time-periodic systems. Avoided crossings can strongly influence the entire occupation distribution. As an impressive application a novel switching mechanism is proposed in a periodically driven double well potential coupled to a heat bath. By a weak variation of the driving amplitude its asymptotic state is switched from the ground state in one well to a state with higher average energy in the other well. / Der asymptotische Zustand eines Quantensystems, das in Kontakt mit einem Wärmebad steht, wird durch einen zeitlich periodischen Antrieb gegenüber einem zeitunabhängigen System nachhaltig verändert. In dieser Arbeit wird ein umfassendes Bild über den asymptotischen Zustand zeitlich periodischer Quantensysteme entworfen, indem es diesen zur Struktur des zugehörigen klassischen Phasenraums in Beziehung setzt. Dazu werden die Besetzungswahrscheinlichkeiten der Floquet-Zustände hinsichtlich ihrer semiklassischen Eigenschaft analysiert, nach welcher sie entweder regulär oder chaotisch sind. Die regulären Floquet-Zustände sind mit exponentiellen Gewichten e^{-betaeff Ereg} ähnlich der kanonischen Verteilung e^{-beta E} zeitunabhängiger Systeme besetzt. Dabei sind die reguläre Energien Ereg durch die Quantisierung des Systems vorgegeben, dessen klassische Eigenschaften auch die effektive Temperatur 1/betaeff bestimmen. Die chaotischen Zustände dagegen haben fast einheitliche Besetzungswahrscheinlichkeiten, welche unabhängig von ihrer mittleren Energie sind.
Über diese semiklassischen Eigenschaften hinaus ist das Auftreten von vermiedenen Kreuzungen im Spektrum eine intrinsisch quantenmechanische Eigenschaft zeitlich periodischer Systeme. Diese können die gesamte Besetzungsverteilung nachhaltig beeinflussen und finden eine eindrucksvolle Anwendung in Form eines neuartigen Schaltmechanismus in einem harmonisch modulierten Doppelmuldenpotential in Kontakt mit einem Wärmebad. Der asymptotische Zustand kann unter geringer Variation der Antriebsamplitude vom Grundzustand der einen Mulde in einen Zustand höherer mittlerer Energie in der anderen Mulde geschaltet werden.
|
96 |
Classical and quantum investigations of four-dimensional maps with a mixed phase spaceRichter, Martin 05 July 2012 (has links)
Für das Verständnis einer Vielzahl von Problemen von der Himmelsmechanik bis hin zur Beschreibung von Molekülen spielen Systeme mit mehr als zwei Freiheitsgraden eine entscheidende Rolle. Aufgrund der Dimensionalität gestaltet sich ein Verständnis dieser Systeme jedoch deutlich schwieriger als bei Systemen mit zwei oder weniger Freiheitsgraden. Die vorliegende Arbeit soll zum besseren Verständnis der klassischen und quantenmechanischen Eigenschaften getriebener Systeme mit zwei Freiheitsgraden beitragen. Hierzu werden dreidimensionale Schnitte durch den Phasenraum von 4D Abbildungen betrachtet. Anhand dreier Beispiele, deren Phasenräume zunehmend kompliziert sind, werden diese 3D Schnitte vorgestellt und untersucht. In einer sich anschließenden quantenmechanischen Untersuchung gehen wir auf zwei wichtige Aspekte ein. Zum einen untersuchen wir die quantenmechanischen Signaturen des klassischen "Arnold Webs". Es wird darauf eingegangen, wie die Quantenmechanik dieses Netz im semiklassischen Limes auflösen kann. Darüberhinaus widmen wir uns dem wichtigen Aspekt quantenmechanischer Kopplungen klassisch getrennter Phasenraumgebiete anhand der Untersuchung dynamischer Tunnelraten. Für diese wenden wir sowohl den in der Literatur bekannten "fictitious integrable system approach" als auch die Theorie des resonanz-unterstützen Tunnelns auf 4D Abbildungen an.:Contents ..... v
1 Introduction ..... 1
2 2D mappings ..... 5
2.1 Hamiltonian systems with 1.5 degrees of freedom ..... 5
2.2 The 2D standard map ..... 6
3 Classical dynamics of higher dimensional systems ..... 11
3.1 Coupled standard maps as paradigmatic example ..... 12
Stability of fixed points in 4D maps ..... 13
Center manifolds of elliptic degrees of freedom ..... 13
3.2 Near-integrable systems ..... 15
3.2.1 Analytical description of multidimensional, near-integrable systems ..... 15
Resonance structures in 4D maps ..... 16
3.2.2 Pendulum approximation ..... 18
3.2.3 Normal forms ..... 24
3.2.4 Arnold diffusion and Arnold web ..... 24
3.3 Numerical tools for the analysis of regular and chaotic motion ..... 26
3.3.1 Frequency analysis ..... 26
Aim of the frequency analysis ..... 26
Realizations of the frequency analysis ..... 27
Wavelet transforms ..... 30
3.3.2 Fast Lyapunov indicator ..... 31
3.3.3 Phase-space sections ..... 33
Skew phase-space sections containing invariant eigenspaces ..... 34
3.4 Systems with regular dynamics and a large chaotic sea ..... 35
3.4.1 Designed maps: Map with linear regular region, P_llu ..... 36
Phase space of the designed map with linear regular region ..... 38
FLI values ..... 41
Estimating the size of the regular region ..... 43
3.4.2 Designed maps: Islands with resonances, P_nnc ..... 46
Frequency analysis ..... 46
FLI values and volume of the regular and stochastic region ..... 50
Frequency analysis for rank-2 resonance ..... 52
Phase-space sections at different positions p_1 and p_2 ..... 53
Using color to provide the 4-th coordinate ..... 53
Skew phase-space sections containing invariant eigenspaces ..... 57
Arnold diffusion ..... 58
3.4.3 Generic maps: Coupled standard maps, P_csm ..... 63
FLI values and volume of the regular and stochastic region ..... 63
Analysis of fundamental frequencies ..... 66
Skew phase-space sections containing invariant eigenspaces ..... 69
4 Quantum Mechanics ..... 75
4.1 Quantization of Classical Maps ..... 77
4.2 Eigenstates of the time evolution operator U ..... 79
4.2.1 Eigenstates of P_llu ..... 80
4.2.2 Eigenstates of P_nnc ..... 84
4.2.3 Eigenstates of P_csm ..... 87
4.3 Quantum signatures of the stochastic layer ..... 89
4.3.1 Eigenstates resolving the stochastic layer ..... 90
4.3.2 Wave-packet dynamics into the stochastic layer ..... 94
4.4 Dynamical tunneling rates ..... 98
4.4.1 Numerical calculation of dynamical tunneling rates ..... 99
4.4.2 Direct regular-to-chaotic tunneling rates gamma^d of P_llu ..... 101
4.4.3 Prediction of gamma^d using the fictitious integrable system approach ..... 103
4.4.4 Dynamical tunneling rates of P_nnc ..... 105
4.4.5 Interlude: Theory of resonance assisted tunneling (RAT) ..... 106
4.4.6 Prediction of tunneling rates for P_nnc, RAT ..... 111
Selection rules from nonlinear resonances ..... 111
Energy denominators ..... 114
Estimating the parameters of the pendulum approximation from phase-space properties ..... 116
Prediction ..... 118
4.4.7 Dynamical tunneling rates of P_csm ..... 120
5 Summary and outlook ..... 123
Appendix ..... 125
A Potential of the designed map ..... 125
B Quantum-number assignment-algorithm ..... 128
C Alternate paths due to alternate resonances in the description of RAT ..... 131
D Alternate resonances in the description of RAT leading to different tunneling rates ..... 133
E Tunneling rates of map with nonlinear resonances but uncoupled regular region ..... 133
F Interpolation of quasienergies ..... 135
G 2D Poincar'e map for the pendulum approximation ..... 137
H RAT prediction broken down to single paths ..... 139
I Linearization of the pendulum approximation ..... 140
J Iterative diagonalization schemes for the semiclassical limit ..... 143
Inverse iteration ..... 143
Arnoldi method ..... 144
Lanczos algorithm ..... 144
List of figures ..... 148
Bibliography ..... 163 / Systems with more than two degrees of freedom are of fundamental importance for the understanding of problems ranging from celestial mechanics to molecules. Due to the dimensionality the classical phase-space structure of such systems is more difficult to understand than for systems with two or fewer degrees of freedom. This thesis aims for a better insight into the classical as well as the quantum mechanics of 4D mappings representing driven systems with two degrees of freedom. In order to analyze such systems, we introduce 3D sections through the 4D phase space which reveal the regular and chaotic structures. We introduce these concepts by means of three example mappings of increasing complexity. After a classical analysis the systems are investigated quantum mechanically. We focus especially on two important aspects: First, we address quantum mechanical consequences of the classical Arnold web and demonstrate how quantum mechanics can resolve this web in the semiclassical limit. Second, we investigate the quantum mechanical tunneling couplings between regular and chaotic regions in phase space. We determine regular-to-chaotic tunneling rates numerically and extend the fictitious integrable system approach to higher dimensions for their prediction. Finally, we study resonance-assisted tunneling in 4D maps.:Contents ..... v
1 Introduction ..... 1
2 2D mappings ..... 5
2.1 Hamiltonian systems with 1.5 degrees of freedom ..... 5
2.2 The 2D standard map ..... 6
3 Classical dynamics of higher dimensional systems ..... 11
3.1 Coupled standard maps as paradigmatic example ..... 12
Stability of fixed points in 4D maps ..... 13
Center manifolds of elliptic degrees of freedom ..... 13
3.2 Near-integrable systems ..... 15
3.2.1 Analytical description of multidimensional, near-integrable systems ..... 15
Resonance structures in 4D maps ..... 16
3.2.2 Pendulum approximation ..... 18
3.2.3 Normal forms ..... 24
3.2.4 Arnold diffusion and Arnold web ..... 24
3.3 Numerical tools for the analysis of regular and chaotic motion ..... 26
3.3.1 Frequency analysis ..... 26
Aim of the frequency analysis ..... 26
Realizations of the frequency analysis ..... 27
Wavelet transforms ..... 30
3.3.2 Fast Lyapunov indicator ..... 31
3.3.3 Phase-space sections ..... 33
Skew phase-space sections containing invariant eigenspaces ..... 34
3.4 Systems with regular dynamics and a large chaotic sea ..... 35
3.4.1 Designed maps: Map with linear regular region, P_llu ..... 36
Phase space of the designed map with linear regular region ..... 38
FLI values ..... 41
Estimating the size of the regular region ..... 43
3.4.2 Designed maps: Islands with resonances, P_nnc ..... 46
Frequency analysis ..... 46
FLI values and volume of the regular and stochastic region ..... 50
Frequency analysis for rank-2 resonance ..... 52
Phase-space sections at different positions p_1 and p_2 ..... 53
Using color to provide the 4-th coordinate ..... 53
Skew phase-space sections containing invariant eigenspaces ..... 57
Arnold diffusion ..... 58
3.4.3 Generic maps: Coupled standard maps, P_csm ..... 63
FLI values and volume of the regular and stochastic region ..... 63
Analysis of fundamental frequencies ..... 66
Skew phase-space sections containing invariant eigenspaces ..... 69
4 Quantum Mechanics ..... 75
4.1 Quantization of Classical Maps ..... 77
4.2 Eigenstates of the time evolution operator U ..... 79
4.2.1 Eigenstates of P_llu ..... 80
4.2.2 Eigenstates of P_nnc ..... 84
4.2.3 Eigenstates of P_csm ..... 87
4.3 Quantum signatures of the stochastic layer ..... 89
4.3.1 Eigenstates resolving the stochastic layer ..... 90
4.3.2 Wave-packet dynamics into the stochastic layer ..... 94
4.4 Dynamical tunneling rates ..... 98
4.4.1 Numerical calculation of dynamical tunneling rates ..... 99
4.4.2 Direct regular-to-chaotic tunneling rates gamma^d of P_llu ..... 101
4.4.3 Prediction of gamma^d using the fictitious integrable system approach ..... 103
4.4.4 Dynamical tunneling rates of P_nnc ..... 105
4.4.5 Interlude: Theory of resonance assisted tunneling (RAT) ..... 106
4.4.6 Prediction of tunneling rates for P_nnc, RAT ..... 111
Selection rules from nonlinear resonances ..... 111
Energy denominators ..... 114
Estimating the parameters of the pendulum approximation from phase-space properties ..... 116
Prediction ..... 118
4.4.7 Dynamical tunneling rates of P_csm ..... 120
5 Summary and outlook ..... 123
Appendix ..... 125
A Potential of the designed map ..... 125
B Quantum-number assignment-algorithm ..... 128
C Alternate paths due to alternate resonances in the description of RAT ..... 131
D Alternate resonances in the description of RAT leading to different tunneling rates ..... 133
E Tunneling rates of map with nonlinear resonances but uncoupled regular region ..... 133
F Interpolation of quasienergies ..... 135
G 2D Poincar'e map for the pendulum approximation ..... 137
H RAT prediction broken down to single paths ..... 139
I Linearization of the pendulum approximation ..... 140
J Iterative diagonalization schemes for the semiclassical limit ..... 143
Inverse iteration ..... 143
Arnoldi method ..... 144
Lanczos algorithm ..... 144
List of figures ..... 148
Bibliography ..... 163
|
97 |
Photonic Integration with III-V Semiconductor TechnologiesPaul, Tuhin 13 April 2022 (has links)
This dissertation documents works on two projects, which are broadly related to
photonic integration using III-V semiconductor platform for fiber-based optical
communication. Our principal project aims to demonstrate continuous variable
quantum key distribution (CV-QKD) with InP-based photonic integrated cir cuit at the 1550 nanometer of optical wavelength. CV QKD protocols, in which
the key is encoded in the quadrature variables of light, has generated immense
interest over the years because of its compatibility with the existing telecom
infrastructure. In this thesis, we have proposed a design of a photonic inte grated circuit potentially capable of realizing this protocol with coherent states
of light. From the practical perspective, we have basically designed an optical
transmitter and an optical receiver capable of carrying out coherent communi cation via the optical fiber. Initially, we established a mathematical model of
the transceiver system based on the optical transfer matrix of the foundry spe cific (Fraunhofer Heinrich Hertz Institute-Germany) building blocks. We have
shown that our chip design is versatile in the sense that it can support multiple
modulation schemes. Based on the mathematical model, we estimated the link
budget to assess the feasibility of on-chip implementation of our protocol. Then
we ran a circuit level simulation using the process design kit provided by our
foundry to put our analysis on a better footing. The encouraging result from
this step prompted us to generate the mask layout for our transceiver chips,
which we eventually submitted to the foundry. The other project in the thesis
grew out of a collaboration with one of our industry partners. The goal of the
project is to enhance the performance of a distributed feedback laser emitting
at the 1310 nanometer of optical wavelength by optimizing its design. To that
end, we first derived the expression for transmission and reflection spectrum
for the laser cavity. Those expressions contained parameters which needed to
be obtained from the transverse and the longitudinal mode analysis of the laser.
We performed the transverse mode analysis and the longitudinal mode analysis
with commercially available numerical solvers. Those mode profiles critically
depend on the grating physical parameters. Therefore by tweaking grating dimensions one can control the transmission characteristics of the laser.
|
98 |
Novel Analysis Framework Using Quantum Optomechanical Readouts For Direct Detection Of Dark MatterAshwin Nagarajan (10702782) 06 May 2021 (has links)
With the increase in
speculation about the nature of our universe, there has been a growing need to
find the truth about Dark Matter. Recent research shows that the Planck-Mass
range could be a well-motivated space to probe for the detection of Dark Matter
through gravitational coupling. This thesis dives into the possibility of doing
the same in two parts. The first part lays out the analysis framework that
would sense such an interaction, while the second part outlines a prototype
experiment that when scaled up using quantum optomechanical sensors would serve
as the skeleton to perform the analysis with.
|
99 |
On the Various Extensions of the BMS GroupRuzziconi, Romain 15 June 2020 (has links) (PDF)
The Bondi-Metzner-Sachs-van der Burg (BMS) group is the asymptotic symmetry group of radiating asymptotically flat spacetimes. It has recently received renewed interest in the context of the flat holography and the infrared structure of gravity. In this thesis, we investigate the consequences of considering extensions of the BMS group in four dimensions with superrotations. In particular, we apply the covariant phase space methods on a class of first order gauge theories that includes the Cartan formulation of general relativity and specify this analysis to gravity in asymptotically flat spacetime. Furthermore, we renormalize the symplectic structure at null infinity to obtain the generalized BMS charge algebra associated with smooth superrotations. We then study the vacuum structure of the gravitational field, which allows us to relate the so-called superboost transformations to the velocity kick/refraction memory effect. Afterward, we propose a new set of boundary conditions in asymptotically locally (A)dS spacetime that leads to a version of the BMS group in the presence of a non-vanishing cosmological constant, called the Λ-BMS asymptotic symmetry group. Using the holographic renormalization procedure and a diffeomorphism between Bondi and Fefferman-Graham gauges, we construct the phase space of Λ-BMS and show that it reduces to the one of the generalized BMS group in the flat limit. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
100 |
Bi-fractional transforms in phase spaceAgyo, Sanfo D. January 2016 (has links)
The displacement operator is related to the displaced parity operator through a two dimensional
Fourier transform. Both operators are important operators in phase space
and the trace of both with respect to the density operator gives the Wigner functions
(displaced parity operator) and Weyl functions (displacement operator). The generalisation
of the parity-displacement operator relationship considered here is called
the bi-fractional displacement operator, O(α, β; θα, θβ). Additionally, the bi-fractional
displacement operators lead to the novel concept of bi-fractional coherent states.
The generalisation from Fourier transform to fractional Fourier transform can be
applied to other phase space functions. The case of the Wigner-Weyl function is considered
and a generalisation is given, which is called the bi-fractional Wigner functions,
H(α, β; θα, θβ). Furthermore, the Q−function and P−function are also generalised to
give the bi-fractional Q−functions and bi-fractional P−functions respectively. The
generalisation is likewise applied to the Moyal star product and Berezin formalism for
products of non-commutating operators. These are called the bi-fractional Moyal star
product and bi-fractional Berezin formalism.
Finally, analysis, applications and implications of these bi-fractional transforms
to the Heisenberg uncertainty principle, photon statistics and future applications are
discussed.
|
Page generated in 0.0373 seconds