Spelling suggestions: "subject:"phasor measurement units"" "subject:"phasors measurement units""
21 |
Synchrophasor Applications and their Vulnerability to Time Synchronization ImpairmentAlmas, Muhammad Shoaib January 2017 (has links)
Recent years have seen the significance of utilizing time-synchronized, high resolution measurements from phasor measurement units (PMUs) to develop and implement wide-area monitoring, protection and control (WAMPAC) systems. WAMPAC systems aim to provide holistic view of the power system and enable detection and control of certain power system phenomena to enhance reliability and integrity of the grid. This thesis focuses on the design, development and experimental validation of WAMPAC applications, and investigates their vulnerability to time synchronization impairment. To this purpose, a state-of-the-art real-time hardware-in-the-loop (RT-HIL) test-bench was established for prototyping of synchrophasor-based applications. This platform was extensively used throughout the thesis for end-to-end testing of the proposed WAMPAC applications. To facilitate the development of WAMPAC applications, an open-source real-time data mediator is presented that parses the incoming synchrophasor stream and provides access to raw data in LabVIEW environment. Within the domain of wide-area protection applications, the thesis proposes hybrid synchrophasor and IEC 61850-8-1 GOOSE-based islanding detection and automatic synchronization schemes. These applications utilize synchrophasor measurements to assess the state of the power system and initiate protection / corrective action using GOOSE messages. The associated communication latencies incurred due to the utilization of synchrophasors and GOOSE messages are also determined. It is shown that such applications can have a seamless and cost-effective deployment in the field. Within the context of wide-area control applications, this thesis explores the possibility of utilizing synchrophasor-based damping signals in a commercial excitation control system (ECS). For this purpose, a hardware prototype of wide-area damping controller (WADC) is presented together with its interface with ECS. The WADC allows real-time monitoring and remote parameter tuning that could potentially facilitate system operators’ to exploit existing damping assets (e.g. conventional generators) when changes in operating conditions or network topology emerges. Finally the thesis experimentally investigates the impact of time synchronization impairment on WAMPAC applications by designing RT-HIL experiments for time synchronization signal loss and time synchronization spoofing. It is experimentally demonstrated that GPS-based time synchronization impairment results in corrupt phase angle computations by PMUs, and the impact this has on associated WAMPAC application. / <p>QC 20171121</p> / smart transmission grid operation and control (STRONg2rid)
|
22 |
Methods of Handling Missing Data in One Shot Response Based Power System ControlDahal, Niraj 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The thesis extends the work done in [1] [2] by Rovnyak, et al. where the authors have described about transient event prediction and response based one shot control using decision trees trained and tested in a 176 bus model of WECC power system network. This thesis contains results from rigorous simulations performed to measure robustness of the existing one shot control subjected to missing PMU's data ranging from 0-10%.
We can divide the thesis into two parts in which the first part includes understanding of the work done in [2] using another set of one-shot control combinations labelled as CC2 and the second part includes measuring their robustness while assuming missing PMU's data.
Previous work from [2] involves use of decision trees for event detection based on different indices to classify a contingency as a 'Fault' or 'No fault' and another set of
decision trees that decides either to actuate 'Control' or 'No control'. The actuation of control here means application of one-shot control combination to possibly bring the system to a new equilibrium point which would otherwise attain loss of synchronism.
The work done in [2] also includes assessing performance of the one shot control without event detection.
The thesis is organized as follows-
Chapter 1 of the thesis highlights the effect of missing PMUs' data in a power system network and the need to address them appropriately. It also provides a general
idea of transient stability and response of a transient fault in a power system.
Chapter 2 forms the foundation of the thesis as it describes the work done in [1] [2] in detail. It describes the power system model used, contingencies set, and different indices used for decision trees. It also describes about the one shot control combination (CC1) deduced by Rovnyak, et.al. of which performance is later tested in this thesis assuming different missing data scenarios. In addition to CC1, the
chapter also describes another set of control combination (CC2) whose performance is also tested assuming the same missing data scenarios. This chapter also explains about the control methodology used in [2]. Finally the performance metrics of the DTs are explained at the end of the chapter. These are the same performance metrics used in [2] to measure the robustness of the one shot control. Chapter 2 is thus more a literature review of previous work plus inclusion of few simulation results obtained from CC2 using exactly the same model and same control methodology.
Chapter 3 describes different techniques of handling missing data from PMUs most of which have been used in and referred from different previous papers. Finally Chapter 4 presents the results and analysis of the simulation. The thesis is wrapped up explaining future enhancements and room for improvements.
|
23 |
PMU-Based Applications for Improved Monitoring and Protection of Power SystemsPal, Anamitra 07 May 2014 (has links)
Monitoring and protection of power systems is a task that has manifold objectives. Amongst others, it involves performing data mining, optimizing available resources, assessing system stresses, and doing data conditioning. The role of PMUs in fulfilling these four objectives forms the basis of this dissertation. Classification and regression tree (CART) built using phasor data has been extensively used in power systems. The splits in CART are based on a single attribute or a combination of variables chosen by CART itself rather than the user. But as PMU data consists of complex numbers, both the attributes, should be considered simultaneously for making critical decisions. An algorithm is proposed here that expresses high dimensional, multivariate data as a single attribute in order to successfully perform splits in CART.
In order to reap maximum benefits from placement of PMUs in the power grid, their locations must be selected judiciously. A gradual PMU placement scheme is developed here that ensures observability as well as protects critical parts of the system. In order to circumvent the computational burden of the optimization, this scheme is combined with a topology-based system partitioning technique to make it applicable to virtually any sized system.
A power system is a dynamic being, and its health needs to be monitored at all times. Two metrics are proposed here to monitor stress of a power system in real-time. Angle difference between buses located across the network and voltage sensitivity of buses lying in the middle are found to accurately reflect the static and dynamic stress of the system. The results indicate that by setting appropriate alerts/alarm limits based on these two metrics, a more secure power system operation can be realized.
A PMU-only linear state estimator is intrinsically superior to its predecessors with respect to performance and reliability. However, ensuring quality of the data stream that leaves this estimator is crucial. A methodology for performing synchrophasor data conditioning and validation that fits neatly into the existing linear state estimation formulation is developed here. The results indicate that the proposed methodology provides a computationally simple, elegant solution to the synchrophasor data quality problem. / Ph. D.
|
24 |
A Robust Dynamic State and Parameter Estimation Framework for Smart Grid Monitoring and ControlZhao, Junbo 30 May 2018 (has links)
The enhancement of the reliability, security, and resiliency of electric power systems depends on the availability of fast, accurate, and robust dynamic state estimators. These estimators should be robust to gross errors on the measurements and the model parameter values while providing good state estimates even in the presence of large dynamical system model uncertainties and non-Gaussian thick-tailed process and observation noises. It turns out that the current Kalman filter-based dynamic state estimators given in the literature suffer from several important shortcomings, precluding them from being adopted by power utilities for practical applications. To be specific, they cannot handle (i) dynamic model uncertainty and parameter errors; (ii) non-Gaussian process and observation noise of the system nonlinear dynamic models; (iii) three types of outliers; and (iv) all types of cyber attacks. The three types of outliers, including observation, innovation, and structural outliers are caused by either an unreliable dynamical model or real-time synchrophasor measurements with data quality issues, which are commonly seen in the power system.
To address these challenges, we have pioneered a general theoretical framework that advances both robust statistics and robust control theory for robust dynamic state and parameter estimation of a cyber-physical system. Specifically, the generalized maximum-likelihood-type (GM)-estimator, the unscented Kalman filter (UKF), and the H-infinity filter are integrated into a unified framework to yield various centralized and decentralized robust dynamic state estimators. These new estimators include the GM-iterated extended Kalman filter (GM-IEKF), the GM-UKF, the H-infinity UKF and the robust H-infinity UKF. The GM-IEKF is able to handle observation and innovation outliers but its statistical efficiency is low in the presence of non-Gaussian system process and measurement noise. The GM-UKF addresses this issue and achieves a high statistical efficiency under a broad range of non-Gaussian process and observation noise while maintaining the robustness to observation and innovation outliers. A reformulation of the GM-UKF with multiple hypothesis testing further enables it to handle structural outliers. However, the GM-UKF may yield biased state estimates in presence of large system uncertainties. To this end, the H-infinity UKF that relies on robust control theory is proposed. It is shown that H-infinity is able to bound the system uncertainties but lacks of robustness to outliers and non-Gaussian noise. Finally, the robust H-infinity filter framework is proposed that leverages the H-infinity criterion to bound system uncertainties while relying on the robustness of GM-estimator to filter out non-Gaussian noise and suppress outliers. Furthermore, these new robust estimators are applied for system bus frequency monitoring and control and synchronous generator model parameter calibration. Case studies of several different IEEE standard systems show the efficiency and robustness of the proposed estimators. / Ph. D. / The enhancement of the reliability, security, and resiliency of electric power systems depends on the availability of fast, accurate, and robust dynamic state estimators. These estimators should be robust to gross errors on the measurements and the model parameter values while providing good state estimates even in the presence of large dynamical system model uncertainties and non-Gaussian thick-tailed process and observation noises. There are three types of gross errors or outliers, namely, observation, innovation, and structural outliers. They can be caused by either an unreliable dynamical model or real-time synchrophasor measurements with data quality issues, which are commonly seen in the power system. The system uncertainties can be induced in several ways, including i) unknowable system inputs, such as noise, parameter variations and actuator failures, to name a few; ii) unavailable inputs, such as unmeasured mechanical power, field voltage of the exciter, unknown fault location; and iii) inaccuracies of the model parameter values of the synchronous generators, the loads, the lines, and the transformers, to name a few. It turns out that the current Kalman filter-based dynamic state estimators suffer from several important shortcomings, precluding them from being adopted by power utilities for practical applications.
To address these challenges, this dissertation has proposed a general theoretical framework that advances both robust statistics and robust control theory for robust dynamic state and parameter estimation. Specifically, the robust generalized maximum-likelihood-type (GM)- estimator, the nonlinear filter, i.e., unscented Kalman filter (UKF), and the H-infinity filter are integrated into a unified framework to produce various robust dynamic state estimators. These new estimators include the robust GM-IEKF, the robust GM-UKF, the H-infinity UKF and the robust H-infinity UKF. Specifically, the GM-IEKF deals with the observation and innovation outliers but achieving relatively low statistical efficiency in the presence of non-Gaussian system process and measurement noise. To address that, the robust GM-UKF is proposed that is able to achieve a high statistical efficiency under a broad range of non-Gaussian noise while maintaining the robustness to observation and innovation outliers. A reformulation of the GM-UKF with multiple hypothesis testing further enables it to handle three types of outliers. However, the GM-UKF may yield biased state estimates in presence of large system uncertainties. To this end, the H-infinity UKF that depends on robust control theory is proposed. It is able to bound the system uncertainties but lacks of robustness to outliers and non-Gaussian noise. Finally, the robust H-infinity filter framework is proposed that relies on the H-infinity criterion to bound system uncertainties while leveraging the robustness of GM-UKF to filter out non-Gaussian noise and suppress outliers. These new robust estimators are applied for system bus frequency monitoring and control and synchronous generator model parameter calibration. Case studies of several different IEEE standard systems show the efficiency and robustness of the proposed estimators.
|
25 |
On electric grid power quality monitoring using parametric signal processing techniques / Contribution à la surveillance de la qualité de l'énergie du réseau électrique à l'aide de techniques paramétriques de traitement du signalOubrahim, Zakarya 21 November 2017 (has links)
Cette thèse porte sur la surveillance des perturbations de la qualité de l’énergie d’un réseau électrique via des techniques paramétriques de traitement du signal. Pour élaborer nos algorithmes de traitement du signal, nous avons traité les problèmes d’estimation des différentes grandeurs du réseau électrique triphasé et de classification des perturbations de la qualité d'énergie. Pour ce qui est du problème d’estimation, nous avons développé une technique statistique basée sur le maximum de vraisemblance. La technique proposée exploite la nature multidimensionnelle des signaux électriques. Elle utilise un algorithme d’optimisation pour minimiser la fonction de vraisemblance. L’algorithme utilisé permet d’améliorer les performances d’estimation tout en étant d’une faible complexité calculatoire en comparaison aux algorithmes classiques. Une analyse plus poussée de l’estimateur proposé a été effectuée. Plus précisément, ses performances sont évaluées sous un environnement incluant entre autres la pollution harmonique et interharmonique et le bruit. Les performances sont également comparées aux exigences de la norme IEEE C37.118.2011. La problématique de classification dans les réseaux électriques triphasés a plus particulièrement concerné les perturbations que sont les creux de tension et les surtensions. La technique de classification proposée consiste globalement en deux étapes : 1) une pré-classification du signal dans l’une des 4 préclasses établis et en 2) une classification du type de perturbation à l’aide de l’estimation des composants symétriques.Les performances du classificateur proposé ont été évaluées, entre autres, pour différentes nombre de cycles, de SNR et de THD. L’estimateur et le classificateur proposés ont été validés en simulation et en utilisant les données d’un réseau électrique réel du DOE/EPRI National Database of Power System Events. Les résultats obtenus illustrent clairement l’efficacité des algorithmes proposés quand à leur utilisation comme outil de surveillance de la qualité d’énergie. / This thesis deals with electric grid monitoring of power quality (PQ) disturbances using parametric signal processing techniques. The first contribution is devoted to the parametric spectral estimation approach for signal parameter extraction. The proposed approach exploits the multidimensional nature of the electrical signals.For spectral estimation, it uses an optimization algorithm to minimize the likelihood function. In particular, this algorithm allows to improve the estimation accuracy and has lower computational complexity than classical algorithms. An in-depth analysis of the proposed estimator has been performed. Specifically, the estimator performances are evaluated under noisy, harmonic, interharmonic, and off-nominal frequency environment. These performances are also compared with the requirements of the IEEE Standard C37.118.2011. The achieved results have shown that the proposed approach is an attractive choice for PQ measurement devices such as phasor measurement units (PMUs). The second contribution deals with the classification of power quality disturbances in three-phase power systems. Specifically, this approach focuses on voltage sag and swell signatures. The proposed classification approach is based on two main steps: 1) the signal pre-classification into one of 4 pre-classes and 2) the signature type classification using the estimate of the symmetrical components. The classifier performances have been evaluated for different data length, signal to noise ratio, interharmonic, and total harmonic distortion. The proposed estimator and classifier are validated using real power system data obtained from the DOE/EPRI National Database of Power System Events. The achieved simulations and experimental results clearly illustrate the effectiveness of the proposed techniques for PQ monitoring purpose.
|
26 |
Algoritmos recursivos e não-recursivos aplicados à estimação fasorial em sistemas elétricos de potência / Recursive and non-recursive algorithms applied to power systems phasor estimationRodolfo Varraschim Rocha 12 May 2016 (has links)
Este trabalho apresenta uma análise de algoritmos computacionais aplicados à estimação de fasores elétricos em SEPs. A medição dos fasores é realizada por meio da alocação de Unidades de Medição Fasorial nestes sistemas e encontra diversas aplicações nas áreas de operação, controle, proteção e planejamento. Para que os fasores possam ser aplicados, são definidos padrões de medição, sincronização e comunicação, por meio da norma IEEE C37.118.1. A norma apresenta os padrões de mensagens, timetag, fasores, sistema de sincronização, e define testes para avaliar a estimação. Apesar de abranger todos esses critérios, a diretriz não define um algoritmo de estimação padrão, abrindo espaço para uso de diversos métodos, desde que a precisão seja atendida. Nesse contexto, o presente trabalho analisa alguns algoritmos de estimação de fasores definidos na literatura, avaliando o comportamento deles em determinados casos. Foram considerados, dessa forma, os métodos: Transformada Discreta de Fourier, Método dos Mínimos Quadrados e Transformada Wavelet Discreta, nas versões recursivas e não-recursivas. Esses métodos foram submetidos a sinais sintéticos, a fim de verificar o comportamento diante dos testes propostos pela norma, avaliando o Total Vector Error, tempo de resposta e atraso e overshoot. Os algoritmos também foram embarcados em um hardware, denominado PC104, e avaliados de acordo com os sinais medidos pelo equipamento na saída analógica de um simulador em tempo real (Real Time Digital Simulator). / This work presents an analysis of computational algorithms applied to phasor estimation in Electrical Power Systems. The phasor estimation process uses the allocation of Phasor Measurement Units in the system and the measures can be used in many control, operation, planing and protection applications. Therefore, the power system phasors are very useful, specially if they have a common time reference, allowing the determination of the system\'s condition at a given time. The procedures necessary for power system\'s phasors estimation and application are defined by IEEE C37.118.1 standard. The standard defines the requirements for phasor estimation, presenting tests and a methodology to evaluate the algorithms performance. Thus, the standard defines the time tag and data patterns, some synchronization methods, and message examples, simplifying the communication requirements. Despite defining all these parts, the standard does not state which estimation algorithm should be used, making room for the use of various methods, since the standard precision is met. In this context, this work analyzes some phasor estimation algorithms defined in the literature, evaluating their behavior for some cases. It was adopted the recursive and non-recursive versions of the methods: Discrete Fourier Transform, Least Squares and Discrete Wavelet Transform. They were submitted to the standard signals, evaluating the Total Vector Error, time delays, and overshoots. The algorithms were also embedded in hardware (named PC104) and evaluated by real time simulated signals, measured by the PC104 using the analog outputs of a Real Time Digital Simulator.
|
27 |
Algoritmos recursivos e não-recursivos aplicados à estimação fasorial em sistemas elétricos de potência / Recursive and non-recursive algorithms applied to power systems phasor estimationRocha, Rodolfo Varraschim 12 May 2016 (has links)
Este trabalho apresenta uma análise de algoritmos computacionais aplicados à estimação de fasores elétricos em SEPs. A medição dos fasores é realizada por meio da alocação de Unidades de Medição Fasorial nestes sistemas e encontra diversas aplicações nas áreas de operação, controle, proteção e planejamento. Para que os fasores possam ser aplicados, são definidos padrões de medição, sincronização e comunicação, por meio da norma IEEE C37.118.1. A norma apresenta os padrões de mensagens, timetag, fasores, sistema de sincronização, e define testes para avaliar a estimação. Apesar de abranger todos esses critérios, a diretriz não define um algoritmo de estimação padrão, abrindo espaço para uso de diversos métodos, desde que a precisão seja atendida. Nesse contexto, o presente trabalho analisa alguns algoritmos de estimação de fasores definidos na literatura, avaliando o comportamento deles em determinados casos. Foram considerados, dessa forma, os métodos: Transformada Discreta de Fourier, Método dos Mínimos Quadrados e Transformada Wavelet Discreta, nas versões recursivas e não-recursivas. Esses métodos foram submetidos a sinais sintéticos, a fim de verificar o comportamento diante dos testes propostos pela norma, avaliando o Total Vector Error, tempo de resposta e atraso e overshoot. Os algoritmos também foram embarcados em um hardware, denominado PC104, e avaliados de acordo com os sinais medidos pelo equipamento na saída analógica de um simulador em tempo real (Real Time Digital Simulator). / This work presents an analysis of computational algorithms applied to phasor estimation in Electrical Power Systems. The phasor estimation process uses the allocation of Phasor Measurement Units in the system and the measures can be used in many control, operation, planing and protection applications. Therefore, the power system phasors are very useful, specially if they have a common time reference, allowing the determination of the system\'s condition at a given time. The procedures necessary for power system\'s phasors estimation and application are defined by IEEE C37.118.1 standard. The standard defines the requirements for phasor estimation, presenting tests and a methodology to evaluate the algorithms performance. Thus, the standard defines the time tag and data patterns, some synchronization methods, and message examples, simplifying the communication requirements. Despite defining all these parts, the standard does not state which estimation algorithm should be used, making room for the use of various methods, since the standard precision is met. In this context, this work analyzes some phasor estimation algorithms defined in the literature, evaluating their behavior for some cases. It was adopted the recursive and non-recursive versions of the methods: Discrete Fourier Transform, Least Squares and Discrete Wavelet Transform. They were submitted to the standard signals, evaluating the Total Vector Error, time delays, and overshoots. The algorithms were also embedded in hardware (named PC104) and evaluated by real time simulated signals, measured by the PC104 using the analog outputs of a Real Time Digital Simulator.
|
28 |
Estimação estática de estados harmônicos em redes trifásicas de distribuição monitoradas por PMUs: uma abordagem considerando curvas diárias de cargaMelo, Igor Delgado de 21 September 2018 (has links)
Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-10-24T14:20:53Z
No. of bitstreams: 1
igordelgadodemelo.pdf: 3776690 bytes, checksum: 47e7e8480e1ca6486c2b7b102f002e51 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-11-23T12:14:30Z (GMT) No. of bitstreams: 1
igordelgadodemelo.pdf: 3776690 bytes, checksum: 47e7e8480e1ca6486c2b7b102f002e51 (MD5) / Made available in DSpace on 2018-11-23T12:14:30Z (GMT). No. of bitstreams: 1
igordelgadodemelo.pdf: 3776690 bytes, checksum: 47e7e8480e1ca6486c2b7b102f002e51 (MD5)
Previous issue date: 2018-09-21 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Este trabalho apresenta uma nova metodologia para a estimação de estados harmônicos em redes de distribuição de energia elétrica, a partir da modelagem de problemas de otimização, em uma abordagem estática. Assume-se que medições fasoriais sincronizadas são obtidas continuamente por um número reduzido de PMUs (Phasor Measurement Units) estrategicamente alocadas no sistema. Correntes harmônicas passantes em todos os ramos da rede elétrica são variáveis de estado a serem estimadas em coordenadas retangulares. Valendo-se do uso de leis de Kirchhoff, outras grandezas elétricas são calculadas como fasores de tensão, potências ativa e reativa. Os problemas de otimização são modelados para cada ordem harmônica individualmente e para cada intervalo de tempo em que o algoritmo for executado, com o objetivo de estimar estados harmônicos ao longo do tempo, considerando curvas diárias de carga. A função objetivo é determinada a partir do método dos mínimos quadrados ponderados, almejando minimizar o somatório das diferenças quadráticas entre os valores medidos e os valores correspondentes estimados pelo método proposto. Para as barras não monitoradas por PMUs, potências ativa e reativa são consideradas como restrições de desigualdade com limites inferiores e superiores definidos por fatores percentuais, assumindo incertezas sobre as variações de carregamento e componentes harmônicas a serem estimadas em intervalos de tempo regulares. Os problemas de otimização são resolvidos usando o método de pontos interiores com barreira de segurança adaptado, em que a solução ótima é dada sem violação de restrições, através da introdução de um parâmetro de relaxamento que permite que os valores inferiores e superiores das restrições que atingirem seus respectivos valores limites sejam relaxados para que a solução ótima seja encontrada. Sistemas teste de distribuição de energia elétrica trifásicos, topologicamente radial são utilizados para validação da metodologia proposta. Análises de sensibilidade são consideradas para avaliar o tempo computacional, número de PMUs alocadas, geração distribuída, filtro harmônico e parâmetros usados pelo algoritmo proposto. Vantagens deste trabalho incluem número limitado de PMUs a ser instalado, identificação de múltiplas fontes harmônicas, estimação de curvas diárias de carga e componentes harmônicas ao longo do tempo, com erros de estimação reduzidos. / This work presents a novel methodology for harmonic state estimation in electric
power distribution networks, based on optimization problems formulation, in a static
approach. It is assumed that synchronized phasor measurements are continuously obtained using a reduced number of PMUs (Phasor Measurement Units) strategically allocated into the system. Harmonic branch currents passing through the branches of the network are the state variables to be estimated in rectangular coordinates. Based on Kirchhoff’s laws, other electrical quantities are calculated, such as voltage phasors, active and reactive powers. An optimization problem is modelled for each harmonic order individually and for each time interval in which the algorithm is executed, with the objective of estimating harmonic states along the time, considering daily load curves. The objective function is determined based on the weighted least squares method, aiming to minimize the sum of the quadratic difference between measured and estimated values by the proposed method. For the buses which are not monitored by PMUs, active and reactive powers are considered as inequality constraints, with lower and upper limits defined by percentage factors, assuming uncertainties over daily load curves and harmonic components to be estimated in regular time intervals. The optimization problems are solved using the modified safety barrier interior point
method, in which the optimal solution is provided with no constraints violation, by the
introduction of a relaxation parameter which allows the upper and lower bounds of the
constraints which reached their corresponding limits to be relaxed in such a way that the optimal solution is obtained. Three-phase electrical distribution test systems, with radial topology are used for the validation of the proposed methodology. Sensitivity analysis are considered in order to evaluate computational time, distributed generation, harmonic filter and parameters used by the proposed algorithm. Advantages of this work include limited number of PMUs to be installed, multiple harmonic sources identification, estimation of daily load curves and harmonic components along the time, with reduced estimation errors.
|
29 |
From the measurement of synchrophasors to the identification of inter-area oscillations in power transmission systemsWarichet, Jacques 26 February 2013 (has links)
In the early 1980s, relaying engineers conceived a technology allowing a huge step forward in the monitoring of power system behavior: the synchrophasor, i.e. the estimation of a phasor representation - amplitude and phase - of a sinusoidal waveform at a given point in time thanks to highly accurate time synchronization of a digital relay. By measuring synchrophasors across the power system several times per second, and centralizing the appropriate information in a hierarchical way through a telecommunication network link, it is now possible to continuously monitor the state of very large systems at a high refresh rate. <p><p>At the beginning, the phase angle information of synchrophasors was used to support or improve the performance of classic monitoring applications, such as state estimation and post-mortem analysis. Later, synchrophasors were found to be valuable for the detection and analysis of phenomena that were not monitored previously, such as system islanding and angular stability. This allows a better understanding of system behavior and the design of remedial actions in cases where system security appears to be endangered. Early detection and even prediction of instabilities, as well as validation and improvement of the dynamic models used for studies, have thus become possible.<p><p>However, a power system is rarely stationary and the assumptions behind the definition of “phasor” are not completely fulfilled because the waveforms' frequency and amplitude are not constant over a signal cycle at fundamental frequency. Therefore, accuracy of synchrophasor measurements during dynamic events is an important performance criterion. Furthermore, when discontinuities (phase jumps and high magnitude variations) and harmonics disturb the measured analog signals as a consequence of switching actions or external disturbances, measurements provided to the “user” (the operator or the algorithms that will take decisions such as triggering alarms and remedial actions) require a certain robustness. <p><p>The efforts underpinning this thesis have lead to the development of a method that ensures the robustness of the measurement. This scheme is described and tested in various conditions. In order to achieve a closer alignment between required and actual measurement performance, it is recommended to add an online indicator of phasor accuracy to the phasor data. <p><p>Fast automated corrective actions and closed-loop control schemes relying on synchrophasors are increasingly deployed in power systems. The delay introduced in the measurement and the telecommunication can have a negative impact on the efficiency of these schemes. Therefore, measurement latency is also a major performance indicator of the synchrophasor measurement. <p><p>This thesis illustrates the full measurement chain, from the measurement of analog voltages and currents in the power system to the use of these measurements for various purposes, with an emphasis on real-time applications: visualization, triggering of alarms in the control room or remedial actions, and integration in closed-loop controls. It highlights the various elements along this chain, which influence the availability, accuracy and delay of the data. <p><p>The main focus is on the algorithm to estimate synchrophasors and on the tradeoff between accuracy and latency that arises in applications for which measurements are taken during dynamic events and the data must be processed within a very limited timeframe. <p><p>If both fast phasors and slower, more accurate phasors are made available, the user would be able to select the set of phasors that are the most suitable for each application, by giving priority to either accuracy or a short delay.<p><p>This thesis also tentatively identifies gaps between requirements and typical measurements in order to identify current barriers and challenges to the use of wide area measurement systems. <p><p>A specific application, the continuous monitoring of oscillatory stability, was selected in order to illustrate the benefits of synchrophasors for the monitoring, analysis and control of power system behavior. This application requires a good phasor accuracy but can allow for some measurement delay, unless phasor data are used in an oscillation damping controller. In addition, it also relies on modal estimators, i.e. techniques for the online identification of the characteristics of oscillatory modes from measurements. This field of ongoing research is also introduced in this thesis. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
|
30 |
Estimação de estado harmônico para sistemas radiais de distribuição usando medição fasorial sincronizadaMelo, Igor Delgado de 18 September 2015 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2015-12-16T11:21:48Z
No. of bitstreams: 1
igordelgadodemelo.pdf: 4931795 bytes, checksum: cf03c45f0f2492c6cf9186af1b3866a2 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2015-12-16T11:57:23Z (GMT) No. of bitstreams: 1
igordelgadodemelo.pdf: 4931795 bytes, checksum: cf03c45f0f2492c6cf9186af1b3866a2 (MD5) / Made available in DSpace on 2015-12-16T11:57:23Z (GMT). No. of bitstreams: 1
igordelgadodemelo.pdf: 4931795 bytes, checksum: cf03c45f0f2492c6cf9186af1b3866a2 (MD5)
Previous issue date: 2015-09-18 / Este trabalho objetiva apresentar uma metodologia capaz de estimar os componentes
harmônicos em sistemas de distribuição com topologia radial utilizando PMUs (Phasor
Measurement Units). Os estados a serem estimados serão as correntes passantes em todas
as linhas do sistema em coordenadas retangulares. Uma vez que essas correntes são obtidas,
torna-se possível o cálculo de outras grandezas elétricas através das equações de fluxo de
potência e leis de Kirchhoff. A metodologia considera poucas unidades de medição fasorial
(as PMUs) instaladas efetuando a leitura dos sinais de tensões nodais e correntes nas linhas
com distorção harmônica. A fim de restaurar a observabilidade do sistema por completo,
são considerados dados históricos de demanda de potência ativa/reativa, os quais serão
tratados como restrições de desigualdades excursionando entre um valor mínimo e máximo
considerados em um problema de otimização não linear que visa diminuir a diferença entre
os valores monitorados pelas PMUs e os calculados pela metodologia. As mencionadas
restrições permitem ao estimador o acompanhamento das variações sofridas ao longo
do tempo na curva de carga para a frequência fundamental e também para as demais
frequências. A abordagem proposta neste trabalho considera a modelagem trifásica de
equipamentos e linhas de distribuição, portanto, são modelados os efeitos de acoplamento
mútuo entre fases e a operação não linear de equipamentos de eletrônica de potência
tiristorizados. O método demonstra eficiência não apenas em estimar os componentes
harmônicos de um certo espectro considerado no estudo, como também se mostra uma
ferramenta prática de detecção e identificação de fontes harmônicas no sistema elétrico
de potência, além de explicitar um exemplo prático do uso de PMUs no que tange ao
monitoramento de redes de distribuição, carentes de acompanhamento em tempo real. A
metodologia ainda se mostra capaz de ser aliada a grandes estudos contextualizados em
qualidade de energia, uma vez que permite a estimação de índices de distorção harmônica. / This work aims to present a methodology which is capable of estimating harmonic components
for distribution systems with radial topology, using PMUs (Phasor Measurement
Units). The estimated states will be all branch currents of the system expressed in
rectangular coordinates. Once these currents are obtained, it is possible to calculate other
electrical quantities using power flow equations and also Kirchhoff’s law. The methodology
considers the installation of a few number of phasor measurement units which will measure
voltage and branch currents signals distorted by harmonic sources. In order to make the
whole system observable, historical data of active/reactive power demand will be treated
as inequality constraints varying between minimum and maximum limits described in
a non linear optimization problem, which aims to minimize the difference between the
values monitored by PMUs and the ones calculated by the methodology. The already
mentioned constraints allows the accompaniment of the variations occured in a typical load
curve during a period of time for the fundamental frequency and also for their multiples,
allowing the accompaniment of the harmonic load curve, normally unknown. The proposed
approach considers a three-phase modelling of equipments and distribution lines, subject
to their mutual coupling effects caused by mutual impedances between the lines. It will
also be considered electronic-based devices using thyristors located along the distribution
feeder, injecting harmonic currents in the system. The method demonstrates efficiency in
estimating the harmonic states of the net and also in detecting and identifying harmonic
sources in an eletric power system, besides showing a practical use of PMUs for the
monitoring of distribution systems, lacking in information and real-time accompaniment.
The method also enables the estimation of power quality indicators such as total harmonic
distortion.
|
Page generated in 0.0684 seconds