• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 27
  • 9
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 99
  • 27
  • 20
  • 17
  • 15
  • 14
  • 14
  • 13
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Σύνθεση πεπτιδικών αναλόγων της χλωραμφαινικόλης και μελέτη της βιολογικής τους δραστικότητας

Κουρέλης, Θεόδωρος 22 December 2009 (has links)
Στην παρούσα εργασία συνθέσαμε ένα άμινο-άκυλο- και ένα πεπτίδυλο- ανάλογο της χλωραμφαινικόλης. Τα ανάλογα αυτά ήταν η β-αλανίνη-χλωραμφαινικόλη (β-alaCAM) και η φαινυλαλανίνη-φαινυλαλανίνη-χλωραμφαινικόλη (PhePheCAM). Στην συνέχεια μελετήσαμε την βιολογική συμπεριφορά των αναλόγων αυτών μέσα από την μελέτη της κινητικής της αναστολής του σχηματισμού πεπτιδικού δεσμού που επιφέρουν τα εν λόγω ανάλογα. Σε πρωτεϊνοσυνθετικό σύστημα ριβοσωμάτων εκπορευόμενων από Escherichia coli η σύνθεση ακέτυλο-φαινυλαλάνυλο-πουρομυκίνης πραγματοποιείται μέσω μιας αντίδρασης ψευδοπρώτης τάξεως μεταξύ συμπλέγματος C, δηλαδή ακέτυλο-φαινυλαλάνυλο-poly(U)-ριβοσωμάτων, και περίσσειας πουρομυκίνης. Τόσο η β-alaCAM, όσο και η PhePheCAM μελετήθηκαν ως αναστολείς της αντίδρασης σύνθεσης ακέτυλο-φαινυλαλάνυλο-πουρομυκίνης και τα αποτελέσματα της κινητικής της αναστολής που επέφεραν συγκρίθηκαν με γνωστά από την βιβλιογραφία αντίστοιχα αποτελέσματα που αφορούν τόσο την μητρική ένωση, όσο και άλλα άμινο-άκυλο- και πεπτιδικά ανάλογα αυτής. Αρχικά παρατηρήσαμε ότι, απουσία αναστολέα, η αντίδραση ακολουθεί κινητική πρώτης τάξεως καθόλη την χρονική διάρκεια της χημικής αντίδρασης. Ωστόσο, στη συνέχεια παρατηρήσαμε ότι η παρουσία τόσο της β-alaCAM, όσο και της PhePheCAM είχε σαν αποτέλεσμα διφασικές λογαριθμικές συναρτήσεις συγκέντρωσης – χρόνου, όπου υφίστατο μία αρχική ή πρώτη χρονική φάση και μία τελική ή δεύτερη χρονική φάση της χημικής αντίδρασης πουρομυκίνης. Ακολούθησε λεπτομερής κινητική ανάλυση, αρχικά μέσω διαγραμμάτων διπλού αντιστρόφου για τις αρχικές και τις τελικές κλίσεις των λογαριθμικών χρονοκαμπυλών, καθώς και στη συνέχεια μέσω επαναδιαγραμμάτων αρχικών και τελικών κλίσεων έναντι της συγκέντρωσης του αναστολέα. Με τον τρόπο αυτό υπολογίστηκαν οι κινητικές σταθερές αναστολής Κi οι οποίες και συγκρίθηκαν με την κινητική σταθερά αναστολής της μητρικής ένωσης. Τέλος, μέσω υπολογιστικού προγράμματος προσομοίωσης, σχεδιάστηκαν οι συναρτήσεις της φαινομενικής σταθεράς εξισορρόπησης keq έναντι της συγκέντρωσης του αναστολέα και υπολογίστηκαν οι σταθερές k6 και k7. Tόσο η β-alaCAM όσο και η PhePheCAM εμφάνισαν συμπεριφορά βραδέως προσδενομένου συναγωνιστικού αναστολέα ανεξάρτητα από την συγκέντρωσή τους, σε αντίθεση με την μητρική ένωση η οποία εμφανίζει συμπεριφορά συναγωνιστικού αναστολέα σε μικρές συγκεντρώσεις αυτής και συμπεριφορά μικτού μη-συναγωνιστικού αναστολέα σε μεγαλύτερες συγκεντρώσεις αυτής. H β-alaCAM ευρέθηκε 4,6 φορές περισσότερο βιολογικά δραστική από την PhePheCAM και 14,3 βιολογικά ασθενέστερη από την μητρική ένωση. Σε αντίθεση με τη μητρική ένωση, η οποία δεν υφίσταται ισομερισμό, τόσο η β-alaCAM όσο και η PhePheCAM δίνουν, στην τελική ή δεύτερη χρονική φάση της αντίδρασης πουρομυκίνης, γένεση στο ισομερισμένο σύμπλοκο C*I. Αξιοσημείωτη είναι η παρατήρηση ότι ο σχηματισμός του ισομερισμένου συμπλόκου C*I λαμβάνει χώρα μέσω δύο κινητικών βημάτων στην περίπτωση της β-alaCAM, αλλά μέσω ενός μόνο κινητικού βήματος στην περίπτωση της PhePheCAM. Προτείνουμε, ως μοντέλο επεξηγηματικό του μηχανισμού βιολογικής δράσης και χημικής κινητικής των μελετηθέντων συνθετικών αναλόγων, ότι τόσο η β-alaCAM όσο και η PhePheCAM παρουσιάζουν αυξημένη στερεοχημική ομοιότητα με το 3΄-άκρο του άμινο-άκυλο-tRNA ή με το 3΄-άκρο του πεπτίδυλο-tRNA συγκριτικά με τη μητρική ένωση. Η αυξημένη αυτή στερεοχημική ομοιότητα πιθανότατα εξηγεί τον εκσεσημασμένο συναγωνιστικό χαρακτήρα της αναστολής που εμφανίζουν τα μελετηθέντα ανάλογα συγκριτικά με τη μητρική ένωση, ασχέτως του γεγονότος ότι η συνολική αναστολή που επιφέρουν δεν αποδεικνύεται σε καμία περίπτωση ισχυρότερη της αναστολής που επιφέρει η μητρική ένωση. Για τον λόγο αυτό τα εν λόγω συνθετικά ανάλογα της χλωραμφαινικόλης θα πρέπει να θεωρηθούν παλίνδρομα-ανάστροφα ανάλογα (retro-inverso analogs). / One aminoacyl and one peptidyl analog of chloramphenicol (Cl2CHCO-CAM) were prepared. These are L-β-alaCAM and L-PhePheCAM. The kinetics of inhibition of peptide bond formation by these analogs were examined in a cell-free system which had been used previously for the study of Cl2CHCO-CAM [Drainas et al, Eur. J. Biochem. 1987, 164, 53-58]. In a model cell-free system, derived from Escherichia coli, acetylphenylalanyl-puromycin is produced in a pseudo-first-order reaction between the preformed acetylphenylalanyl/tRNA/poly(U)/ribosome complex (complex C) and excess puromycin. Both L-β-alaCAM and L-PhePheCAM were tested as inhibitors in this reaction. In the absence of inhibitor, the reaction follows first-order kinetics for the entire course of the reaction. In the presence of the analog the reaction gives biphasic log-time plots. The kinetic informations pertaining to the initial and the terminal slopes of the plot are analyzed (initial-slope and terminal-slope analysis). Μοreover, through a computer simulation non-linear regression fitting program, the plots between the keq values and the concentration of the inhibitor [I] were constructed, and consequently the values of k6 and k7 were estimated. Detailed kinetic analysis suggests that both these analogs (I) behave as slow-binding inhibitors and react competitively with complex C to form the complex C*I which is inactive towards puromycin. In the presence of L-β-alaCAM, C*I is formed via a two-step mechanism in which C*I is the product of a slow conformational change of the initial encounter complex CI according to the equation C + I CI C*I. Our results, concerning the two-step mechanism of L-β-alaCAM are in agreement with the results of previous investigations evaluating the potency and kinetic mechanisms of other aminoacyl and peptidyl analogs of chloramphenicol [Michelinaki et al, Mol. Pharmacol. 1997, 51, 139-146]. However, in the presence of L-PhePheCAM, our results are unique because we found evidences that C*I is formed via a one-step mechanism as a product of a slow conformational change according to the equation C + I C*I. The parent compound gives complex inhibition kinetics; increasing the concentration of the parent compound changes the inhibition from competitive to mixed noncompetitive [Drainas et al, Eur. J. Biochem. 1987, 164, 53-58]. In contrast, the analogs give competitive kinetics even at high concentrations of the inhibitor. The following Ki and Ki* values have been determined: Ki = 45 μΜ for L-β-alaCAM, Ki* = 10 μΜ for L-β-alaCAM and Ki* = 46 μM for L-PhePheCAM. If we were to assume that both L-β-alaCAM and L-PhePheCAM behave as classical competitive inhibitors, we could say that L-β-alaCAM is 4.6 times more potent than L-PhePheCAM. On this assumption we could also compare chloramphenicol with L-β-alaCAM and see that L-β-alaCAM is 14.3 times weaker than chloramphenicol (Ki = 0.7 μΜ). It is suggested that as compared with chloramphenicol, both L-β-alaCAM and L-PhePheCAM have increased structural similarity to the 3΄-terminus of aminoacyl-tRNA or of peptidyl-tRNA and this similarity results in a more pronounced competitive inhibition. The results are compared with previous data and discussed on the basis of a possible retro-inverso relationship between chloramphenicol analogs and puromycin.
62

Mathematical modeling of phenylalanine and lignin biosynthetic networks in plants

Longyun Guo (6634556) 14 May 2019 (has links)
<div>L-phenylalanine (Phe) is an important amino acid which is the precursor of various plant secondary metabolisms. Its biosynthesis and consumption are governed by different levels of regulatory mechanisms, yet our understanding to them are still far from complete. The plant has evolved a complex regulation over Phe, likely due to the fact that a significant portion of carbon assimilated by photosynthesis is diverted to its downstream products. In particular, lignin as one of them, is among the most abundant polymers in plant secondary cell wall. Studies have unraveled the interconnected metabolism involved in lignin biosynthesis, and a hierarchical gene regulatory network on top of it is also being uncovered by different research groups. These biological processes function together for sufficient lignification to ensure cell wall hydrophobicity and rigidity for plant normal growth. Yet on the other hand, the presence of lignin hinders the efficient saccharification process for biofuel production. Therefore, it is fundamental to understand lignin biosynthesis and its upstream Phe biosynthesis in a systematic way, to guide rational metabolic engineering to either reduce lignin content or manipulate its composition <i>in planta</i>.</div><div> </div><div> Phe biosynthesis was predominantly existed in plastids according to previous studies, and there exists a cytosolic synthetic route as well. Yet how two pathways are metabolically coordinated are largely under-explored. Here I describe a flux analysis using time course datasets from <sup>15</sup>N L-tyrosine (Tyr) isotopic labeling studies to show the contributions from two alternative Phe biosynthetic routes in Petunia flower. The flux split between cytosolic and plastidial routes were sensitive to genetic perturbations to either upstream chorismate mutase within shikimate pathway, or downstream plastidial cationic amino-acid transporter. These results indicate the biological significance of having an alternative biosynthetic route to this important amino acid, so that defects of the plastidial route can be partially compensated to maintain Phe homeostasis.</div><div> </div><div> To understand the metabolic dynamics of the upstream part of lignin biosynthesis, we developed a multicompartmental kinetic model of the general phenylpropanoid metabolism in Arabidopsis basal lignifying stems. The model was parameterized by Markov Chain Monte Carlo sampling, with data from feeding plants with ring labeled [<sup>13</sup>C<sub>6</sub>]-Phe. The existence of vacuole storage for both Phe and <i>p</i>-coumarate was supported by an information theoretic approach. Metabolic control analysis with the model suggested the plastidial cationic amino-acid transporter to be the step with the highest flux controlling coefficient for lignin deposition rate. This model provides a deeper understanding of the metabolic connections between Phe biosynthesis and phenylpropanoid metabolism, suggesting the transporter step to be the promising target if one aims to manipulate lignin pathway flux.</div><div> </div><div> Hundreds of gene regulatory interactions between transcription factors and structural genes involved in lignin biosynthesis has been reported with different experimental evidence in model plant Arabidopsis, however, a public database is missing to summarize and present all these findings. In this work, we documented all reported gene regulatory interactions in Arabidopsis lignin biosynthesis, and ended up with a gene regulatory network consisting of 438 interactions between 72 genes. A network is then constructed with linear differential equations, and its parameters were estimated and evaluated with RNA-seq datasets from 13 genetic backgrounds in Arabidopsis basal stems. We combined this network with a kinetic model of lignin biosynthesis starting from Phe and ending with all monolignols participated in lignin polymerization. This hierarchical kinetic model is the first model integrating dynamic information between transcriptional machinery and metabolic network for lignin biosynthesis. We showed that it is able to provide mechanistic explanations for most of experimental findings from different genotypes. It also provides the opportunity to systematically test all possible genetic manipulation strategies targeting to lignification relevant genes to predict the lignin phenotypes <i>in silico</i>.</div>
63

Adsorção de aminoácidos em hidróxidos duplos lamelares: efeito da temperatura, pH e força iônica do meio / Adsorption of amino acids in layered double hydroxides: temperature, pH and ionic strength effects

Silvério, Fabiano 28 January 2005 (has links)
Hidróxidos Duplos Lamelares (HDLs), são materiais lamelares constituídos de camadas positivamente carregadas de um hidróxido misto de dois metais (um di e um trivalente), com ânions hidratados no domínio interlamelar. Apesar de serem potenciais adsorventes, o estudo da adsorção de aminoácidos sobre estes sólidos ainda não foi realizado. Este é importante, pois abre caminho para a aplicação de HDLs na remoção e recuperação de aminoácidos de soluções aquosas, provenientes de processos industriais. Este trabalho teve por objetivo estudar a adsorção e a sorção dos aminoácidos: Ácido Aspártico (Asp), Ácido Glutâmico (Glu) e Fenilalanina (Phe), a partir de soluções aquosas, em HDLs do sistema [Mg-Al-CO3], verificando o efeito de variáveis como temperatura, pH e força iônica (FI) do meio. O adsorvente foi preparado pelo método de coprecipitação a pH variável e caracterizado quanto à composição, organização estrutural, textura e morfologia. A adsorção de Asp, Glu e Phe no HDL não calcinado indicaram que não ocorre a substituição do ânion interlamelar (CO32-), mas sim a adsorção por interação do aminoácido com as cargas residuais na superfície do HDL. O processo mostrou uma grande dependência das variáveis estudadas. A adsorção de Asp e Glu tem comportamento semelhante, embora o aumento da força iônica, seja mais pronunciado em pH 7 para o Asp, e em pH 10 para o Glu. Sem aumento da força iônica, as isotermas atingem ou se aproximam do patamar de adsorção destes aminoácidos, e o aumento na temperatura diminui a quantidade máxima adsorvida. A adsorção de Phe apresentou comportamento similar aos anteriores, exceto pelo fato do aumento da força iônica causar uma diminuição na adsorção. Os resultados obtidos para a sorção no HDL calcinado mostraram que inicialmente o HDL é reconstituído contendo ânions OH- intercalados que são deslocados pelo aminoácido conforme a concentração deste aumenta. Neste caso, Asp e Glu também apresentaram comportamentos semelhantes: as isotermas atingem um patamar onde a sorção torna-se constante e o aumento da temperatura diminui a quantidade sorvida. Para a Phe, a quantidade sorvida é muito maior que para os demais e não se observa o patamar de sorção constante. A temperatura não causa alteração significativa na quantidade sorvida. Os resultados de remoção dos aminoácidos, obtidos para o HDL calcinado se mostraram mais eficientes do que àqueles observados no HDL não calcinado. / Layered Double Hydroxides (LDHs), are lamellar materials constituted of positively charged layers of two cations mixed hydroxide (a bi and a trivalent one), with hydrated anions in the interlayer domain. In spite of they being potential adsorbents, the study of the adsorption of amino acids on these solids has not been done yet. This is important, because it opens the perspective for the application of LDHs to remove and to recover amino acids from aqueous solutions, resultant from industrial processes. The aim of this work was to study the adsorption and the sorption of the amino acids: Aspartic Acid (Asp), Glutamic Acid (Glu) and Phenylalanine (Phe), from aqueous solutions, in [Mg-Al-CO3] LDHs, verifying the effect of the variables: temperature, pH and ionic strength of the medium. The adsorbent was prepared by the coprecipitation method and characterized with respect to their composition, structural organization, texture and morphology. The adsorption of Asp, Glu and Phe in LDH indicated that the substitution of the interlayer anion (CO32-) doesn\'t occur, but the adsorption process occurs by the interaction of the amino acid with the residual charges on the LDH surface. The process showed a dependence on the parameters studied. The adsorption of Asp and Glu presented similar behavior, although the ionic strength effect is more pronounced in pH 7 for Asp, and in pH 10 for Glu. Without the increase in ionic strength, the isotherms reach or approach a plateau, and the increasing in the temperature reduces the maximum amount adsorbed. The adsorption of Phe has similar behavior to the previous ones, except at higher ionic strength, in which a decrease in the adsorption was observed. The results for the sorption in calcined LDH showed that the LDH are reconstituted with the OH- anions intercalated at low amino acid concentrations. The intercalation of amino acid becomes important as their concentration increase. In this case, Asp and Glu also presented similar behaviors: the isotherms reach a plateau where the sorption becomes constant and the increase of the temperature reduces the amount of sorbed amino acid. For Phe, the amount sorbed is higher than those for the others amino acids and the plateau of constant sorption was not observed. The temperature doesn\'t cause any significant alteration in the sorbed amount. The results of removing the amino acids on calcined LDH showed to be more efficient than those observed for the adsorption in LDH.
64

X-ray characterization of PaPheOH, a bacterial phenylalanine hydroxylase

Ekström, Fredrik January 2003 (has links)
<p>Many human diseases are associated with the malfunction of enzymes in the aromatic amino acid hydroxylase family, e.g. phenylketonuria (PKU), hyperphenylalaninemia (HPA), schizophrenia and Parkinson's disease. The family of aromatic aminoacid hydroxylases comprises the enzymes phenylalanine hydroxylase (PheOH), tyrosine hydroxylase (TyrOH) and tryptophane hydroxylase (TrpOH). These enzymes require the cofactor (6R)-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4) and atomic oxygen. In eukaryotes, the aromatic amino acid hydroxylases share the same organization with a N-terminal regulatory domain, a central catalytic domain and a C-terminal tetramerization domain. Aromatic amino acid hydroxylases that correspond to the core catalytic domain of the eukaryotic enzymes are found in bacteria. The main focus of this thesis is the structural characterization of a phenylalanine hydroxylase from the bacterium Pseudomonas aeruginosa (PaPheOH). </p><p>To initiate the structural characterization, the active site environment was investigated with X-ray absorption spectroscopy (XAS). The experimental data support a model where the active site iron is coordinated by four oxygen atoms and two nitrogen atoms. We suggest that two water molecules, His121, His126 and Glu166 coordinates the active site iron. In this model, Glu166 provides two of the oxygen atoms in a bidentate binding geometry. EXAFS and XANES studies indicate that structural rearrangements are induced in the second and third coordination shells in samples of PaPheOH with BH4 and/or L-Phe. </p><p>The 1.6 Å X-ray structure of PaPheOH shows a catalytic core that is composed of helices and strands in a bowl-like arrangement. The iron is octahedrally coordinated, by two water molecules and the evolutionary conserved His121, His126 and Glu166 that coordinates the iron with bidentate geometry. The pterin binding loop of PaPheOH (residue 81-86) adopts a conformation that is displaced by 5-6 Å from the expected pterin binding site. Consistent with the unfavourable position of the pterin binding loop is the observation that PaPheOH has a low specific activity compared to the enzymes from human and Chromobacterium violaceum. </p><p>The second part of this thesis focus on the crystallization and structure determination of the actin binding domain of a-actinin (ABD). a-Actinin is located in the Z-disc of skeletal muscle were it crosslinks actin filaments to the filamentous protein titin. The ABD domain of a-actinin crystallizes in space group P21 with four molecules in the asymmetric unit. The structure of the ABD domain has been solved to a d-spacing of 2.0 Å. The two CH-domains of ABD is composed of 5 a-helices each. The a-helices fold into a closed compact conformation with extensive intramolecular contacts between the two domains.</p>
65

Pteridine dependent hydroxylases as autoantigens in autoimmune polyendocrine syndrome type 1

Ekwall, Olov January 2001 (has links)
<p>Autoimmune polyendocrine syndrome type I (APS) is a monogenous, recessively inherited disease characterised by endocrine and non-endocrine autoimmune manifestations. One fifth of APS I patients suffer from periodic intestinal dysfunction with varying degrees of malabsorbtion, steatorrhea and constipation. Alopecia areata is found in one third of APS I patients. By immunoscreening human cDNA libraries derived from normal human duodenum and scalp with APS I sera, we identified tryptophan hydroxylase (TPH) as an intestinal autoantigen and tyrosine hydroxylase (TH) as a dermal autoantigen. Forty-eight percent (38/80) of the APS I patients had TPH antibodies (Ab) and 44% (41/94) showed TH immunoreactivity. No reactivity against TPH or TH was seen in healthy controls. TPH-Abs showed a statistically significant correlation with gastrointestinal dysfunction (p<0.0001) and TH-Abs were significantly correlated to alopecia (p=0.02). TPH-Ab positive APS I sera specifically immunostained TPH containing enterochromaffin cells in normal duodenal mucosa. In affected mucosa a depletion of the TPH containing EC cells was seen. In enzyme inhibition experiments TPH and TH activity <i>in vitro</i> was reduced by adding APS I sera. TPH and TH together with phenylalanine hydroxylase (PAH) constitute the group of pteridine dependent hydroxylases. These are highly homologous enzymes involved in the biosynthesis of neurotransmitters. Immunoprecipitation of PAH expressed <i>in vitro</i> showed that 27% (25/94) of APS I patients had antibodies reacting with PAH, but no associations with clinical manifestations was observed. An immunocompetition assay showed that the PAH reactivity reflects a cross-reactivity with TPH.</p><p>In conclusion, we have identified TPH and TH as intestinal and dermal autoantigens in APS I, coupled to gastrointestinal dysfunction and alopecia. We have also demonstrated immunoreactivity against PAH in APS I patient sera reflecting a cross-reactivity with TPH.</p>
66

Pteridine dependent hydroxylases as autoantigens in autoimmune polyendocrine syndrome type 1

Ekwall, Olov January 2001 (has links)
Autoimmune polyendocrine syndrome type I (APS) is a monogenous, recessively inherited disease characterised by endocrine and non-endocrine autoimmune manifestations. One fifth of APS I patients suffer from periodic intestinal dysfunction with varying degrees of malabsorbtion, steatorrhea and constipation. Alopecia areata is found in one third of APS I patients. By immunoscreening human cDNA libraries derived from normal human duodenum and scalp with APS I sera, we identified tryptophan hydroxylase (TPH) as an intestinal autoantigen and tyrosine hydroxylase (TH) as a dermal autoantigen. Forty-eight percent (38/80) of the APS I patients had TPH antibodies (Ab) and 44% (41/94) showed TH immunoreactivity. No reactivity against TPH or TH was seen in healthy controls. TPH-Abs showed a statistically significant correlation with gastrointestinal dysfunction (p&lt;0.0001) and TH-Abs were significantly correlated to alopecia (p=0.02). TPH-Ab positive APS I sera specifically immunostained TPH containing enterochromaffin cells in normal duodenal mucosa. In affected mucosa a depletion of the TPH containing EC cells was seen. In enzyme inhibition experiments TPH and TH activity in vitro was reduced by adding APS I sera. TPH and TH together with phenylalanine hydroxylase (PAH) constitute the group of pteridine dependent hydroxylases. These are highly homologous enzymes involved in the biosynthesis of neurotransmitters. Immunoprecipitation of PAH expressed in vitro showed that 27% (25/94) of APS I patients had antibodies reacting with PAH, but no associations with clinical manifestations was observed. An immunocompetition assay showed that the PAH reactivity reflects a cross-reactivity with TPH. In conclusion, we have identified TPH and TH as intestinal and dermal autoantigens in APS I, coupled to gastrointestinal dysfunction and alopecia. We have also demonstrated immunoreactivity against PAH in APS I patient sera reflecting a cross-reactivity with TPH.
67

Pheromone production in the butterfly Pieris napi L

Murtazina, Rushana January 2014 (has links)
Aphrodisiac and anti-aphrodisiac pheromone production and composition in the green-veined white butterfly Pieris napi L. were investigated. Aphrodisiac pheromone biosynthesis had different time constraints in butterflies from the diapausing and directly developing generations. Effects of stable isotope incorporation in adult butterfly pheromone, in the nectar and flower volatiles of  host plants from labeled substrates were measured by solid phase microextraction and gas chromatography–mass spectrometry. A method to fertilize plants with stable isotopes was developed and found to be an effective method to investigate the transfer of pheromone building blocks from flowering plants to butterflies. The anti-aphrodisiac methyl salicylate was not biosynthesized from phenylalanine in flowers of Alliaria petiolata. Both aphrodisiac and anti-aphrodisiac pheromones in P.napi are produced not only from resources acquired in the larval stage, but also from nutritional resources consumed intheadult stage. Males of P. napi produce the anti-aphrodisiac pheromone from both the essential amino acid L-phenylalanine and from common flower fragrance constituents. / <p>QC 20140311</p>
68

X-ray characterization of PaPheOH, a bacterial phenylalanine hydroxylase

Ekström, Fredrik January 2003 (has links)
Many human diseases are associated with the malfunction of enzymes in the aromatic amino acid hydroxylase family, e.g. phenylketonuria (PKU), hyperphenylalaninemia (HPA), schizophrenia and Parkinson's disease. The family of aromatic aminoacid hydroxylases comprises the enzymes phenylalanine hydroxylase (PheOH), tyrosine hydroxylase (TyrOH) and tryptophane hydroxylase (TrpOH). These enzymes require the cofactor (6R)-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4) and atomic oxygen. In eukaryotes, the aromatic amino acid hydroxylases share the same organization with a N-terminal regulatory domain, a central catalytic domain and a C-terminal tetramerization domain. Aromatic amino acid hydroxylases that correspond to the core catalytic domain of the eukaryotic enzymes are found in bacteria. The main focus of this thesis is the structural characterization of a phenylalanine hydroxylase from the bacterium Pseudomonas aeruginosa (PaPheOH). To initiate the structural characterization, the active site environment was investigated with X-ray absorption spectroscopy (XAS). The experimental data support a model where the active site iron is coordinated by four oxygen atoms and two nitrogen atoms. We suggest that two water molecules, His121, His126 and Glu166 coordinates the active site iron. In this model, Glu166 provides two of the oxygen atoms in a bidentate binding geometry. EXAFS and XANES studies indicate that structural rearrangements are induced in the second and third coordination shells in samples of PaPheOH with BH4 and/or L-Phe. The 1.6 Å X-ray structure of PaPheOH shows a catalytic core that is composed of helices and strands in a bowl-like arrangement. The iron is octahedrally coordinated, by two water molecules and the evolutionary conserved His121, His126 and Glu166 that coordinates the iron with bidentate geometry. The pterin binding loop of PaPheOH (residue 81-86) adopts a conformation that is displaced by 5-6 Å from the expected pterin binding site. Consistent with the unfavourable position of the pterin binding loop is the observation that PaPheOH has a low specific activity compared to the enzymes from human and Chromobacterium violaceum. The second part of this thesis focus on the crystallization and structure determination of the actin binding domain of a-actinin (ABD). a-Actinin is located in the Z-disc of skeletal muscle were it crosslinks actin filaments to the filamentous protein titin. The ABD domain of a-actinin crystallizes in space group P21 with four molecules in the asymmetric unit. The structure of the ABD domain has been solved to a d-spacing of 2.0 Å. The two CH-domains of ABD is composed of 5 a-helices each. The a-helices fold into a closed compact conformation with extensive intramolecular contacts between the two domains.
69

Adsorção de aminoácidos em hidróxidos duplos lamelares: efeito da temperatura, pH e força iônica do meio / Adsorption of amino acids in layered double hydroxides: temperature, pH and ionic strength effects

Fabiano Silvério 28 January 2005 (has links)
Hidróxidos Duplos Lamelares (HDLs), são materiais lamelares constituídos de camadas positivamente carregadas de um hidróxido misto de dois metais (um di e um trivalente), com ânions hidratados no domínio interlamelar. Apesar de serem potenciais adsorventes, o estudo da adsorção de aminoácidos sobre estes sólidos ainda não foi realizado. Este é importante, pois abre caminho para a aplicação de HDLs na remoção e recuperação de aminoácidos de soluções aquosas, provenientes de processos industriais. Este trabalho teve por objetivo estudar a adsorção e a sorção dos aminoácidos: Ácido Aspártico (Asp), Ácido Glutâmico (Glu) e Fenilalanina (Phe), a partir de soluções aquosas, em HDLs do sistema [Mg-Al-CO3], verificando o efeito de variáveis como temperatura, pH e força iônica (FI) do meio. O adsorvente foi preparado pelo método de coprecipitação a pH variável e caracterizado quanto à composição, organização estrutural, textura e morfologia. A adsorção de Asp, Glu e Phe no HDL não calcinado indicaram que não ocorre a substituição do ânion interlamelar (CO32-), mas sim a adsorção por interação do aminoácido com as cargas residuais na superfície do HDL. O processo mostrou uma grande dependência das variáveis estudadas. A adsorção de Asp e Glu tem comportamento semelhante, embora o aumento da força iônica, seja mais pronunciado em pH 7 para o Asp, e em pH 10 para o Glu. Sem aumento da força iônica, as isotermas atingem ou se aproximam do patamar de adsorção destes aminoácidos, e o aumento na temperatura diminui a quantidade máxima adsorvida. A adsorção de Phe apresentou comportamento similar aos anteriores, exceto pelo fato do aumento da força iônica causar uma diminuição na adsorção. Os resultados obtidos para a sorção no HDL calcinado mostraram que inicialmente o HDL é reconstituído contendo ânions OH- intercalados que são deslocados pelo aminoácido conforme a concentração deste aumenta. Neste caso, Asp e Glu também apresentaram comportamentos semelhantes: as isotermas atingem um patamar onde a sorção torna-se constante e o aumento da temperatura diminui a quantidade sorvida. Para a Phe, a quantidade sorvida é muito maior que para os demais e não se observa o patamar de sorção constante. A temperatura não causa alteração significativa na quantidade sorvida. Os resultados de remoção dos aminoácidos, obtidos para o HDL calcinado se mostraram mais eficientes do que àqueles observados no HDL não calcinado. / Layered Double Hydroxides (LDHs), are lamellar materials constituted of positively charged layers of two cations mixed hydroxide (a bi and a trivalent one), with hydrated anions in the interlayer domain. In spite of they being potential adsorbents, the study of the adsorption of amino acids on these solids has not been done yet. This is important, because it opens the perspective for the application of LDHs to remove and to recover amino acids from aqueous solutions, resultant from industrial processes. The aim of this work was to study the adsorption and the sorption of the amino acids: Aspartic Acid (Asp), Glutamic Acid (Glu) and Phenylalanine (Phe), from aqueous solutions, in [Mg-Al-CO3] LDHs, verifying the effect of the variables: temperature, pH and ionic strength of the medium. The adsorbent was prepared by the coprecipitation method and characterized with respect to their composition, structural organization, texture and morphology. The adsorption of Asp, Glu and Phe in LDH indicated that the substitution of the interlayer anion (CO32-) doesn\'t occur, but the adsorption process occurs by the interaction of the amino acid with the residual charges on the LDH surface. The process showed a dependence on the parameters studied. The adsorption of Asp and Glu presented similar behavior, although the ionic strength effect is more pronounced in pH 7 for Asp, and in pH 10 for Glu. Without the increase in ionic strength, the isotherms reach or approach a plateau, and the increasing in the temperature reduces the maximum amount adsorbed. The adsorption of Phe has similar behavior to the previous ones, except at higher ionic strength, in which a decrease in the adsorption was observed. The results for the sorption in calcined LDH showed that the LDH are reconstituted with the OH- anions intercalated at low amino acid concentrations. The intercalation of amino acid becomes important as their concentration increase. In this case, Asp and Glu also presented similar behaviors: the isotherms reach a plateau where the sorption becomes constant and the increase of the temperature reduces the amount of sorbed amino acid. For Phe, the amount sorbed is higher than those for the others amino acids and the plateau of constant sorption was not observed. The temperature doesn\'t cause any significant alteration in the sorbed amount. The results of removing the amino acids on calcined LDH showed to be more efficient than those observed for the adsorption in LDH.
70

Neue Ansätze in der Qualitätssicherung von Honig

Beckmann, Klaus 04 December 2008 (has links)
Der erste Teil der Dissertation behandelt die Substanz Phenylacetaldehyd, welche im Honig ausgehend von der Aminosäure Phenylalanin als natürlicher Stoff, aber auch als Rückstand nach Einsatz als Bienenvertreibungsmittel vorliegen kann. Die in dieser Arbeit durchgeführten Untersuchungen zeigen, dass der Gehalt an Phenylalanin sowie äußere Bedingungen, denen Honige ausgesetzt sind, für die Konzentration an Phenylacetaldehyd maßgebend sind. Diese Parameter müssen mindestens bekannt sein, um entscheiden zu können, ob Phenylacetaldehyd als Rückstand im Honig vorliegt. Der zweite Teil befasst sich mit der Filtration von Honig, welche in manchen Ländern durchgeführt wird, um eine Kristallisation zu herauszuzögern. Es wurde eine Methode entwickelt, um illegale Beimischungen gefilterter Honige zu ungefilterten Honigen nachzuweisen. Dazu wird das Enzym Saccharase gelchromatographisch isoliert und diese Fraktion elektrophoretisch untersucht. Die Veränderung des Proteinspektrums lässt sich mit Hilfe einer densitometrischen Auswertung quantifizieren und zeigt gefilterten Honig auch in Mischungen bis zu einem Anteil von mindestens 15 % an.

Page generated in 0.0626 seconds