• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 17
  • 4
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 110
  • 14
  • 14
  • 14
  • 12
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Regulation of actin dynamics by phosphoinositides during epithelial closure

Pickering, Karen January 2013 (has links)
Epithelia act as protective barriers and it is therefore essential that wounded epithelia are rapidly repaired to maintain barrier function. Cells surrounding epithelial wounds become motile following wounding, which involves generating dynamic actin structures that drive closure of the wound. These actin structures include filopodia which are important in the final stage of epithelial closure in which the opposing epithelial edges are joined together. The molecular mechanisms that trigger wound edge cells to become motile are not well understood. Using Drosophila wound healing and the morphogenetic process dorsal closure as models, we find that phosphatidylinositol 3,4,5-triphosphate (PIP3) regulates epithelial closure by promoting the formation of filopodia at epithelial edges. PIP3 accumulates at epithelial edges and genetically depleting PIP3 results in reduced filopodia and defects in epithelial closure. We demonstrate that the GTPase Rac and guanine nucleotide exchange factor Myoblast City function downstream of PIP3 to promote filopodia formation. We also demonstrated that the scaffolding protein Par3/Bazooka and the lipid phosphatase PTEN are responsible for restricting the localisation of PIP3 and consequently the downstream signals to the epithelial leading edge, so acting to determine the location of filopodia formation. This project reveals a novel mechanism by which actin protrusions, required for epithelial closure, are formed in response to epithelial damage. Additionally, we have identified an additional role for PIP3 in regulating the extrusion of cells from epithelial sheets in the Drosophila embryo. This finding implicates PIP3 in the regulation of tissue homoeostasis, and could contribute to our understanding of tumour initiation as unregulated tissue growth can result in the formation of tumours.
32

Characterization of Binding of PTEN and its Disease Related Mutants to Phospholipid Model Membranes

Redfern, Roberta E. 22 July 2008 (has links)
No description available.
33

La protéomique de sous-domaines du trans-Golgi Network révèle un lien entre les sphingolipides et les phosphoinositides chez la plante. / Proteomics of trans-Golgi Network subdomains revealed lipid crosstalk between sphingolipids and phosphoinositides in plants.

Esnay, Nicolas 21 December 2018 (has links)
La polarité cellulaire est une caractéristique commune à tous les organismes. Jusqu’à récemment, il était assumé que la sécrétion de protéines vers des domaines polaires de la cellule végétale se faisait de façon non polarisée, mais ce point de vue a été re-étudié, la sécrétion est polarisée mais la dynamique, les voies de traficempruntées et les mécanismes sont toujours inconnus. Précédemment, mon laboratoire d’accueil a caractérisé un enrichissement en sphingolipides contenant des acides gras à très longues chaines (VLCFAs) au niveau d’un sous-domaine du trans-Golgi Network (TGN) appelé Vésicules de Sécrétions (SVs). Plus précisément, il a été montré que la longueur des acides gras des sphingolipides jouait un rôle critique dans la sécrétion du transporteur d’auxine PIN2 des SVs vers des domaines polaires de la membrane plasmique. Pendant ma thèse, je me suis intéressé à la question suivante : comment les sphingolipides agissent-t-ils au TGN? En identifiant le protéome des SVs, ainsi qu'en utilisant des outils génétiques et pharmacologiques en combinaison avec la visualisation de marqueurs lipidiques, j'ai pu identifier que les sphingolipides agissent sur l’homéostasie des phosphoinositides en mettant en avant un lien fonctionnel entre ces deux classes de lipides au sein de la cellule végétale. En utilisant un set de marqueurs des phosphoinositides (PIPs), j’ai pu montrer que les sphingolipides ciblent principalement le phosphatidyl-inositol-3-phosphate, PI(3)P et le phosphatidylinositol- 4-phosphate, PI(4)P. De plus, mon analyse protéomique a montré que la localisation d'un ensemble de protéines liées aux PIPs était diminuée dans les SVs/TGN immunopurifiées quand la composition des sphingolipides est altérée. Mes résultats nous forcent à revoir notre vision de la dynamique des lipides au niveau des membranes, et suggère l’idée que la dynamique de remodelage de la composition d’une classe de lipide, les phosphoinositides, peut être modulée par une autre classe de lipide, les sphingolipides. / Cell polarity is a defining feature of all organisms. Until very recently, it was thought that delivery of proteins to polar domains of root epidermal cells plasma membrane was non-polar, but this view has been re-examined, the delivery is polar but the dynamics, the paths taken, and the mechanisms are unknown. My host team previously characterised an enrichment of Very-Long-Chain-Fatty-Acids (VLCFAs)-containing sphingolipids at the site of secretory vesicles (SVs) sub-domain of the trans-Golgi Network (TGN). Moreover, the length of sphingolipids acyl-chain was found to play a critical role in secretory sorting of the auxin carrier PIN2 from SVsassociated TGN to apical polar domain of the plasma membrane (PM). During my PhD, I addressed the following question: how sphingolipids act at SVs/TGN? Using proteomics of SVs, genetics and pharmacological tools in combination with visualisation of lipid probes we could identify that sphingolipids act on phosphoinositides (PIPs) homeostasis establishing a new functional link between these two lipids in plant cells. Using a set of multi-affinity fluorescent PIPs probes I could show that sphingolipids target phosphatidylinositol-3-phosphate (PI3P) and phosphatidylinositol-4-phosphate (PI4P). Moreover, my proteomic analyses show that several PIPs-related proteins are downregulated in immuno-purified TGN-associated SVs when the sphingolipid composition is altered pharmacologically. My results force the reassessment of our view of lipid membranes dynamics and highlight the idea that dynamic remodelling of the composition of one lipid class, the phosphoinositides, can be modulated by another lipid class, the sphingolipids.
34

Mécanismes du transfert intercellulaire des homéoprotéines / Mechanisms of homeoproteins intercellular transfer

Lin, Thibault 24 September 2015 (has links)
Les homéoprotéines constituent une famille de facteurs de transcription dont le point commun est la présence en leur sein d’un domaine de liaison à l’ADN particulier, l’homéodomaine. Des travaux menés au laboratoire ont permis de mettre en avant la capacité de nombreux membres de cette famille protéique à pouvoir transférer entre cellules, ouvrant la voie à un nouveau mode d’action de ces protéines, en plus de leur action sur la transcription. L’homéodomaine joue un rôle central dans ce transfert intercellulaire car il contient des séquences requises pour les deux étapes principales d’un tel transfert intercellulaire, sécrétion et internalisation. D’un point de vue mécaniste, ces deux étapes successives du transfert intercellulaire des homéoprotéines font appel à des mécanismes désignés comme non-conventionnels car propres à ce processus. Suite à de précédentes études menées dans le laboratoire mettant en évidence un rôle crucial de la localisation subcellulaire de l’homéoprotéine ENGRAILED-2 (EN-2) dans sa sécrétion, nous avons pu mettre en avant l’existence d’une interaction directe entre EN-2 et certains lipides appartenant à la classe des phosphoinositides [notamment les PI(4,5)P2]. Nous avons ensuite montré que cette interaction est à l’origine de l’association d’une fraction de EN-2 intracellulaire avec les compartiments membranaires. Ces travaux ont également permis de mieux comprendre le rôle de certains protéoglycanes dans l’accumulation de EN-2 à la surface des cellules suite à sa sécrétion et au cours de son internalisation. Enfin nous avons pu mettre en évidence l’implication du domaine d’interaction de EN-2 avec PBX dans le transfert intercellulaire de EN-2. / Homeoproteins belong to a family of transcription factors which all share a common DNA binding domain, the homeodomain. Beside their action as transcription factors, homeoproteins are also able to be transferred between cells by unconventional means. The two consecutive steps of this intercellular transfer (secretion then internalisation) require sequences located in the homeodomain. Thanks to studies previously lead by our laboratory, we know that subcellular localisation of ENGRAILED-2 (EN-2) homeoprotein is a crucial step in its subsequent secretion. On this basis, we showed that EN-2 interacts directly with a certain subtype of phospholipids, phosphoinositides [e.g. PI(4,5)P2]. Then, we demonstrated than these lipids are involved in the association of EN-2 protein with membraneous compartments within the cell. PI(4,5)P2 located in the inner leaflet of the plasma membrane are also involved in the direct translocation of EN-2 across plasma membrane. This work is also focused on the role of proteoglycans, and more precisely syndecans, in EN-2 cell surface accumulation after both secretion and internalisation. At last, we also established the implication of EN-2 interaction domain with PBX in EN-2 intercellular transfer.
35

Carbachol- and ACPD-Induced Phosphoinositide Responses in the Developing Rat Neocortex

Hartgraves, Morri D. 08 1900 (has links)
Signal transduction via the phosphoinositide (PI) second messenger system has key roles in the development and plasticity of the neocortex. The present study localized PI responses to individual cortical layers in slices of developing rat somatosensory cortex. The acetylcholine agonist carbachol and the glutamate agonist trans-1-amino-1,3-cyclopentanedicarboxylic acid (ACPD) were used to stimulate PI turnover. The PI responses were compared to the distribution of the corresponding PI-linked receptors in order to investigate the regional ontogeny of PI coupling to receptors in relation to neural development. The method for assessing PI turnover was modified from Hwang et al. (1990). This method images the PI response autoradiographically through the localizaton of [3H]cytidine that has been incorporated into the membrane-bound intermediate, cytidine diphosphate diacylglycerol. In each age group (postnatal days 4-30), carbachol resulted in more overall labeling than ACPD. For both agonists, the response peaked on postnatal day 10 (P10) and was lowest in the oldest age group. The laminar distribution of the carbachol PI response from P4-P16 corresponded fairly well with the laminar distribution of [3H]quinuclidinyl benzilate binding (Fuchs, 1995). However, in the subplate layer the carbachol response was strong while receptor binding was minimal. The carbachol response decreased after postnatal day 10, while the overall levels of receptor binding continued to increase. From P5 - P14, PI-linked metabotropic glutamate receptors are most concentrated in layer IV (Blue et al., 1997), whereas only on P6 was there a correspondingly high ACPD-initiated PI response in this layer. Unlike receptors, the PI response was strong in upper V (P4 - P12) and within layers II/III (P8 - P16). From P4 - P21, the subplate showed relatively high PI labeling compared to receptor binding. The several differences between the distribution of PI response and receptors suggest spatiotemporal heterogeneity of receptor coupling to second messenger systems.
36

Investigating the link between phosphoinositides, endosomal trafficking and ESCRT function

Dukes, Joseph Donaldson January 2008 (has links)
The maturation of early endosomes into multivesicular bodies (MVBs) and subsequent trafficking to lysosomes is an important event for the control and silencing of endocytosed membrane receptors. The endosomal-sorting complex required for transport (ESCRT) proteins appear to play a key role in this event. Phosphatidylinositol lipids including PtdIns(3,5)P2 have been implicated in the MVB-lysosomal pathway and an ESCRT-III component CHMP3 binds to this lipid in vitro. The purpose of this thesis was to investigate the link between ESCRT proteins, PtdIns(3,5)P2 and endo-lysosomal trafficking. Firstly, a protein expressed by Salmonella, which is a phosphatase that acts on PtdIns(3,5)P2, was investigated as a potential tool for manipulating cellular PtdIns(3,5)P2 levels. Our results suggest that it is potentially a useful tool for this purpose and that expression of SopB perturbs endosome to lysosome trafficking. These findings provide further evidence for a role of PtdIns(3,5)P2 in endo-lysosomal trafficking.
37

Mechanism of PTEN binding to model membranes

Neumann, Brittany M 25 April 2018 (has links)
PTEN (phosphatase and tensin homolog deleted on chromosome ten) is a potent tumor suppressor. PTEN’s tumor suppressor action is rooted in its phosphatase function on the lipid substrate phosphatidylinositol-(3,4,5)-trisphosphate (PI(3,4,5)P3). PTEN’s enzymatic activity is specific for the third position of the inositol headgroup. PI(3,4,5)P3 is a second messenger that is a part of the PI3K-Akt pathway, and its dysregulation leads to constitutively activated AKT. The result of AKT activation is cell cycle progression, motility, cell growth, and proliferation, and consequently, overaction leads to neoplastic growth and tumorigenesis. PTEN antagonizes this pathway by regulating PI(3,4,5)P3 population through its phosphatase activity which produces the lipid PI(4,5)P2 (phosphatidylinositol-(4,5)-bisphosphate). A result of PTEN’s function is that its activity must be localized at the PM (plasma membrane) since this is where its substrate resides. Additionally, the mole percent of the phosphoinositide family of lipids is small. From highest percent composition to lowest the phosphoinositide species in the PM rank as PI(4,5)P2 (~2%), PI(4)P (~1%), and PI(3,4,5)P3 (~0.02%). For PTEN to turn over its substrate, it must first translocate from the cytosol to the PM and then search through the plasma membrane for this rare but high in demand lipid. This is at the center of the scarcity paradox. This work explores how PTEN may overcome this paradox by using its multiple lipid binding domains to interact with multiple lipid partners to efficiently localize it toward a region with a high probability of having PI(3,4,5)P3. This hypothesis is tested using two kinetic methodologies. First, we use pre- steady state stopped-flow spectrometry to determine the rates that govern PTEN-lipid binding. Second, we use single-molecule total internal reflectance fluorescence (smTIRF) microscopy to resolve the diffusion coefficients and dwell times of bound PTEN on SLBs supported lipid bilayers (SLBs). We test PTEN against various lipid compositions to determine how the bilayer structure in addition to the chemistry of the lipid influences the enzyme’s binding. These compositions include PI(4,5)P2, PI phosphatidylinositol (PI), phosphatidylserine (PS), PI(4,5)P2/PI and PI(4,5)P2/PS. In addition to this kinetic work, we will also present a novel model membrane platform that takes advantage of a microfluidic device to develop lateral lipid gradients in SLBs. This microfluidic platform, in the future, will allow for the investigation of the dynamic behavior of proteins interacting with lipids but with a bilayer that has a structure recapitulating polarized membranes like in chemotaxing cells.
38

Phosphoinositides in blood platelet : mapping of molecular species and evidence for a new localization and role of PI3P / Phosphoinositides plaquettaires : cartographie d'espèces moléculaires et mise en évidence d'une nouvelle localisation et d'un nouvau rôle du PI3P

Mujalli, Abdulrahman 20 April 2018 (has links)
Les phosphoinositides (PIs) sont des phospholipides membranaires qui jouent un rôle crucial dans le contrôle de l'organisation spatio-temporelle de nombreuses voies de signalisation intracellulaire, du réarrangement du cytosquelette d'actine et du trafic de vésicules. Dans la plaquette, le métabolisme des PIs est particulièrement actif et génère, par le jeu de kinases, phosphatases et phospholipases spécifiques, des seconds messagers indispensables à l'activation plaquettaire, notamment le phosphatidylinositol 3,4,5-trisphosphate (PIP3). La première partie de la thèse concerne l'étude des différentes espèces moléculaires (composition en acides gras) des 4 grandes classes de PIs (PI, PIP, PIP2 et PIP3) dans les plaquettes humaines et de souris au repos ou lors de leur activation. Cette analyse, jamais réalisée précédemment, a été possible grâce à une technique de spectrométrie de masse (LC-MS), basée sur la méthylation avec le TMS-diazomethane des groupements phosphates des PIs. Cette étude montre une augmentation rapide et transitoire de 2 espèces moléculaires majoritaires de PIP3 lors d'une stimulation plaquettaire avec une réactivité différente des plaquettes humaines et de souris en réponse aux agonistes plaquettaires (thrombine et CRP). En utilisant des modèles murins présentant une inactivation des PI3-kinases (PI3K) dans la lignée mégacaryocytaire et des inhibiteurs spécifiques de PI3K, j'ai montré que l'isoforme PI3Kß (p110ß) de classe I est très majoritairement responsable de la production des diverses espèces moléculaires de PI(3,4,5)P3 en réponse à la thrombine ou au CRP alors que la PI3Ka (p110a) est faiblement impliquée. Les résultats montrent également une grande variété d'espèces moléculaires de PI et seulement 2 espèces moléculaires prédominantes pour les PIP, PIP2 et PIP3, aussi bien chez l'homme que chez la souris malgré des régimes alimentaires très différents. Nous montrons des différences importantes dans le métabolisme des espèces moléculaires de PI, PIP et PIP2 dans les plaquettes humaines et de souris lors de la stimulation. Dans cette étude, nous avons identifié pour la première fois des espèces moléculaires minoritaire de PIP2 mais qui augmentent de façon importante lors de la stimulation plaquettaire. Ce travail permet de dresser la première cartographie des différentes espèces moléculaires de PIs présents dans les plaquettes humaines et de souris et les modifications induites par leur activation. La deuxième partie de la thèse montre pour la première fois une localisation atypique du phosphatidylinositol 3- monophosphate (PI3P), dans le feuillet externe de la membrane plasmique plaquettaire. Je démontre que ce lipide minoritaire (environ 10% de PIP), connu pour être intracellulaire et impliqué dans le trafic vésiculaire, est également présent à la surface des plaquettes au repos. Aucun autre PI n'a pu être détecté dans le feuillet externe de la membrane plasmique plaquettaire. Ce résultat a été obtenu en utilisant différentes sondes fluorescentes se liant spécifiquement au PI3P et leurs contrôles mutées. Nous montrons que le traitement des plaquettes avec des enzymes métabolisant spécifiquement le PI3P (MTM1 et ABH) réduit significativement ce pool de PI3P. Les plaquettes de souris déficientes en PI3K de classe II et III présentent une diminution du PI3P de surface. De manière intéressante, ce pool externe de PI3P permet l'endocytose des protéines circulantes liant le PI3P, in vitro, ex vivo et in vivo. Les sondes PI3P spécifiques internalisées dans la plaquette sont stockées dans les granules a puis sécrétées lors de l'activation plaquettaire. Cette étude montre que le PI3P se comporte comme un récepteur permettant l'endocytose de protéines plasmatiques spécifiques. / Phosphoinositides (PIs) are membrane phospholipids that play a crucial role in controlling the spatiotemporal organization of many intracellular signaling pathways, actin cytoskeleton rearrangement, and vesicle trafficking. In platelet, the metabolism of PIs is highly active and generates, by the interplay of specific kinases, phosphatases and phospholipases, second messengers essential for platelet activation, in particular phosphatidylinositol 3,4,5-trisphosphate (PIP3). The first part of the thesis concerns the study of the different molecular species (fatty-acyl composition) of 4 PIs classes (PI, PIP, PIP2 and PIP3) in resting and stimulated human and mouse platelets. This analysis, never realized previously, was possible thanks to a mass spectrometry (LC-MS) technique, based on methylation of PIs phosphates groups with TMS- diazomethane. This study shows a rapid and transient increase in the 2 major molecular species of PIP3 during platelet stimulation with a different reactivity of human and mice platelets according to the used agonists (thrombin and CRP). Using mice models with selective deletion of PI3-kinases (PI3K) in the megakaryocyte lineage and specific PI3K inhibitor, I showed that the class I PI3Kß (p110ß) is the major isoform responsible for the production of the various molecular species of PIP3 in response to thrombin or CRP whereas class I PI3Ka (p110a) is weakly involved. The results also show a large variety of molecular species of PI while only 2 predominant molecular species for PIP, PIP2 and PIP3, both in humans and mice platelets despite very different diet. We show a significant difference in terms of PI, PIP and PIP2 molecular species metabolism in human and mice platelets during stimulation. In this study, we identified for the first time the presence of low-abundance molecular species of PIP2 but which increase significantly during platelet stimulation. This work constitutes the first comprehensive analysis of PIs molecular species and the changes in their actual mass during platelet stimulation. The second part of the thesis shows for the first time an atypical localization of phosphatidylinositol 3-monophosphate (PI3P), in the outer leaflet of the platelet plasma membrane. I demonstrate that this minor lipid (about 10% of PIP), known to be intracellular and involved in vesicular trafficking, is also present at the surface of resting platelet. No other PIs could be detected in the outer leaflet of the platelet plasma membrane. This result was obtained using fluorescent probes binding specifically to PI3P and their mutated controls. Treatment of platelets with PI3P specific metabolizing enzymes (MTM1 and ABH) significantly reduced this particular pool of PI3P. Class II and III PI3K deficient mouse platelets showed a decrease in surface PI3P. Interestingly, this external pool of PI3P was able to mediate endocytosis of circulating PI3P- binding proteins, in vitro, ex vivo and in vivo. Internalized specific PI3P probes were stored into platelets a-granules and could then be secreted during platelets activation. This study shows that PI3P acts as a receptor allowing endocytosis of specific plasma proteins.
39

The Regulation of PREX2 by Phosphorylation

Barrows, Douglas Walker January 2015 (has links)
Phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3)-dependent RAC exchanger 2 (PREX2) is a guanine nucleotide exchange factor (GEF) for the Ras-related C3 botulinum toxin substrate 1 (RAC1) GTPase. As a GEF, PREX2 facilitates the exchange of GDP for GTP on RAC1. GTP bound RAC1 then activates its downstream effectors, including p21-activated kinases (PAK). PREX2, RAC1, and PAK kinases all have key roles within the insulin signaling pathway. The insulin receptor is a tyrosine kinase that phosphorylates the insulin receptor substrate (IRS) family of adaptor proteins, leading to the activation of phosphatidylinositide 3-kinase (PI3K) and the generation of PI(3,4,5)P3. PI(3,4,5)P3 then activates numerous downstream signaling proteins, including AKT and RAC1, to regulate several important cellular processes, such as glucose metabolism and cell proliferation. In addition to being a RAC1 GEF, PREX2 affects the insulin signaling pathway by inhibiting the lipid phosphatase activity of phosphatase and tensin homolog (PTEN), which dephosphorylates PI(3,4,5)P3 to antagonize PI3K. PREX2 is also important in cancer, which is likely a consequence of both its role as a RAC1 GEF and as a PTEN inhibitor. PREX2 GEF activity is activated by PI(3,4,5)P3 and by Gβγ, which is a heterodimer that is released after GPCR activation. However, PREX2 regulation within specific signaling pathways is poorly understood. This thesis aims to understand the regulation of PREX2 downstream of ligand binding to receptors on the cell surface, with a focus on insulin. This is achieved by studying the phosphorylation of PREX2 after insulin stimulation and by characterizing protein-protein interactions involving PREX2 and key proteins in the insulin signaling pathway. Herein, we identified PI(3,4,5)P3-dependent phosphorylation events on PREX2 that occur downstream of insulin stimulation. Phosphorylation of PREX2 also occurred downstream of Gβγ, suggesting that phosphorylation was associated with the activation of PREX2 GEF activity. Interestingly, phosphorylation of PREX2 reduced GEF activity towards RAC1 and a phospho-mimicking mutation of PREX2 at an insulin-mediated phosphorylation site reduced cancer cell invasion. Phosphorylation of PREX2 also decreased PREX2 binding to the cellular membrane, PI(3,4,5)P3, and Gβγ, providing a mechanism for reduced GEF activity. These data suggested that phosphorylation was part of a negative feedback circuit to decrease the RAC1 signal, which led to the identification of the PAK kinases as mediators of PREX2 phosphorylation. Importantly, insulin-induced phosphorylation of PREX2 was delayed compared to AKT, which is consistent with a model where PREX2 phosphorylation by PAK occurs after activation of PREX2 to attenuate its function. Altogether, we propose that second messengers activate the PREX2-RAC1 signal, which sets in motion a cascade whereby PAK kinases phosphorylate and negatively regulate PREX2 to decrease RAC1 activation. This type of regulation would allow for transient activation of the PREX2-RAC1 signal. We then asked whether PAK phosphorylation of PREX2 was altered in cancer. To do this, we analyzed four recurrent somatic PREX2 tumor mutations, R155W, R297C, R299Q, and R363Q. Interestingly, all four mutants had reduced insulin and PAK1 dependent phosphorylation, and R297C had lower levels of phosphorylation induced by PI3K activating tumor mutants. This suggests that tumors might be mutating PREX2 in order to avoid PAK mediated negative regulation of RAC1. Lastly, we characterized PREX2 interactions with proteins that are critical for insulin signaling, with a focus on the interaction between the PREX2 pleckstrin homology (PH) domain and PTEN. PREX2 inhibition of PTEN is mediated by the PH domain, and we discovered that the β3β4 loop of the PH domain was required for binding of the isolated PH domain to PTEN. We also found that PREX2 co-immunoprecipitates with other insulin related proteins, including the p85 regulatory subunit of PI3K, IRS4, and the insulin receptor. Taken together, the studies in this thesis solidify the role of PREX2 in insulin signaling by showing that PREX2 GEF activity is tightly regulated by insulin and PAK-induced phosphorylation and also by characterizing PREX2 interactions with critical insulin related proteins. Further, this PAK dependent negative regulatory circuit downstream of both PI(3,4,5)P3 and Gβγ activation of PREX2 could have impacts in many aspects of biology given the roles that PREX2 and RAC1 have in critical cellular functions such as cell motility and glucose metabolism, and in diseases such as cancer and diabetes.
40

Structural and Functional Investigation of Bacterial Membrane Biosynthesis

Belcher Dufrisne, Meagan Leigh January 2018 (has links)
Integral membrane enzymes contribute a unique repertoire to the cell, as they are capable of synthesizing products from substrates of different chemical character at the membrane-water interface. Membrane-embedded enzymes are often responsible for the synthesis of important components of the cellular membrane and contribute to the structural integrity of the cell, maintenance of cellular homeostasis and signal transduction. One of the main focuses of Dr. Filippo Mancia’s laboratory is understanding how enzymes complete these functions by investigating, at an atomic level, the determinants of substrate binding and catalysis within the membrane and at the membrane surface. Here I will present my investigation of two such integral membrane enzyme systems, which are responsible for the synthesis and processing of membrane-embedded molecules in bacteria. Phosphatidylinositol-phosphate Synthase (PIPS) Phosphaitylinositol (PI) is an essential lipid component in mycobacteria, demonstrated by loss of viability when PI is reduced to 50% of wild-type levels. Phosphatidylinositol (PI) is required for the biosynthesis of key components of the cell wall, such as the glycolipids phosphatidylinositol-mannosides, lipomannan and lipoarabinomannan. For these molecules, PI serves as a common lipid anchor to the membrane. In Mycobacterium tuberculosis, the disease causing pathogen of tuberculosis, these glycolipids function as important virulence factors and modulators of the host immune response. Therefore, the enzyme responsible for PI synthesis in this organism is a potential target for the development of anti-tuberculosis drugs. The defining step in phosphatidylinositol biosynthesis is catalyzed by a member of the CDP-alcohol phosphotransferase enzyme family. The enzyme uses CDP-diacylglycerol as the donor substrate, and either inositol in eukaryotes or inositol-phosphate in prokaryotes as the acceptor alcohol of the synthesis reaction. In prokaryotes, phosphatidylinositol-phosphate synthase (PIPS; a member of the CDP-alcohol phosphotransferase family) catalyzes this reaction to yield phosphatidylinositol-phosphate, which is then dephosphorylated to PI by an uncharacterized enzyme. Structures of PIPS from Renibacterium salmoninarum (RsPIPS), with and without bound CDP-diacylglycerol, have revealed the location of the acceptor site as well as molecular determinants of substrate specificity and catalysis of the enzyme. However, RsPIPS has low activity relative to PIPS from Mycobacterium tuberculosis (MtPIPS) and the two share only 40% protein sequence identity. Therefore, these initial structures have limited potential for meaningful homology modeling and drug design. Presented here are the structures of PIPS from Mycobacterium kansasii (MkPIPS), which is 86% identical to MtPIPS, in an apo state to 3.1 Å resolution, in a nucleotide-bound state to 3.5 Å resolution, and in a novel ligand-bound state to 2.6 Å resolution. This work provides a structural and functional framework to understand the mechanism of phosphatidylinositol-phosphate biosynthesis in the context of mycobacterial pathogens. RodA-PBP2 Complex The cell wall of most gram-negative and gram-positive bacteria (excluding atypical bacteria such as members of Mycoplasmataceae) is composed of peptidoglycan, a mesh of repeating carbohydrates (N-acetylmuramic acid, MurNAc, and N-acetylglucosamine, GlcNAc) cross-linked by small peptides. Peptidoglycan is essential for growth, division and viability of the organism. Any disruption of the biosynthesis of peptidoglycan, whether by genetic mutation, inhibition with antibiotics or degradation by lysozyme, results in bacterial cell lysis. Peptidoglycan helps maintain cell shape and serves as an anchor for accessory proteins and other cell wall components. As essential components of the cell wall, enzymes contributing to the peptidoglycan biosynthetic pathway can be exploited as antibiotic targets. After a hydrophilic peptidoglycan precursor (UDP-MurNAc-pentapeptide) is synthesized in the cytosol, it is attached to the lipid carrier undecaprenyl phosphate (UndP). The lipid-linked precursor (undecaprenyl-pyrophosphoryl-MurNAc-pentapeptide or Lipid I) is modified further to undecaprenyl-pyrophosphoryl-MurNAc-(pentapeptide)-GlcNAc (Lipid II) by addition of a GlcNAc moiety. Lipid II is then flipped across the membrane to the periplasm where its sugars are polymerized to form the glycan strands of the peptidoglycan mesh. SEDS proteins, essential for maintaining bacterial processes that determine shape, elongation, cell division and sporulation, are integral membrane enzyme that have been implicated in this process as either Lipid II flippases, glycosyltransferases responsible for sugar polymerization, or both. SEDS proteins are also known to form a functional complex with type b penicillin-binding proteins (PBPs), which are known as transpeptidase enzymes, responsible for the crosslinking of peptides in the formation of the peptidoglycan mesh. Though structures of both RodA (a SEDS protein involved in bacterial growth and elongation) and type b PBPs are available, the interaction between the two proteins and their joint enzymatic activity is poorly characterized. Here, I present the preliminary structural characterization of a RodA-PBP2 protein complex by single-particle cryo-electron microscopy (cryo-EM). We hope this ongoing work will contribute to the understanding of these enzymes and to the development of antibiotics to combat antibiotic resistance.

Page generated in 0.6189 seconds