• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 134
  • 23
  • 14
  • 12
  • 8
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 232
  • 92
  • 63
  • 58
  • 50
  • 48
  • 37
  • 37
  • 37
  • 35
  • 30
  • 30
  • 29
  • 28
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

From Growth to Electronic Structure of Dipolar Organic Semiconductors on Coinage Metal Surfaces

Ilyas, Nahid January 2014 (has links)
In this thesis, I present a comprehensive study of the interfacial electronic structure and thin film growth of two types of dipolar organic semiconductors on noble metals by employing a surface science approach, which underlines the critical role of surface electronic states in determining the interfacial electronic structure and self-assembly of organic semiconductors. I show that the electronic structure at organic/metal interfaces is complex and depends on important factors such as molecular adsorption configuration, surface/molecule coupling strength, reactivity of the substrate, molecular electrostatics, and local film structure. I demonstrate the fundamental capability of the image potential states and resonances in probing the local film environment, especially in systems consisting of inhomogeneous film structure. I also show that the presence of adsorbates on a surface allows one to investigate quantum mechanical interference effects otherwise not accessible on the bare surface. The dipolar organic semiconductors studied here are vanadyl naphthalocyanine (VONc) and chloroboron-subphthalocyanine (ClB-SubPc). The single crystals of gold and copper with hexagonal surface symmetry (111) were used to investigate the interfacial properties of VONc and ClB-SubPc, respectively. The fundamental understanding of self-assembly of large π-conjugated organic semiconductors on metals is a crucial step in controlling fabrication of supramolecular structures. Here, I provide a first step in this direction with a detailed and quantitative analysis of molecular nearest-neighbor distances that unravels the fundamental intermolecular interactions of organic semiconductors on transition metal surfaces. I additionally investigated the interfacial electronic structure of these organic semiconductors to examine the relation between molecular adsorption orientation and charge transfer across the interface.
82

Electron-phonon Coupling in Quasi-Two-Dimensional Correlated Systems

Johnston, Steven Sinclair 07 June 2010 (has links)
Over the past 20 years a great deal of progress has been made towards understanding the physics of the high-temperature (high-Tc) cuprate superconductors. Much of the low- energy physics of these materials appears to be captured by two-dimensional Hubbard or t-J models which have provided significant insight into a number of properties such as the pseudogap, antiferromagnetism and superconductivity itself. However, intrinsically planar models are unable to account for the large variations in Tc observed across materials nor do they capture the electron-phonon (el-ph) interaction, the importance of which a number of experimental probes now indicate. This thesis examines the el-ph interaction in cuprates using a combination of analytical and numerical techniques. Starting from the microscopic mechanism for coupling to in-plane and c-axis polarized oxygen phonons, the theory of el-ph coupling is presented. The el-ph self-energy is derived in the context of Migdal-Eliashberg theory and then applied to understanding the detailed temperature and doping dependence of the renormalizations observed by Angle-resolved photoemission spectroscopy. The qualitative signatures of el- boson coupling in the density of states of a d-wave superconductor are also examined on general grounds and a model calculation is presented for el-ph coupling signatures in the density of states. Following this, the theory is extended to include the effects of screening and the consequences of this theory are explored. Due to the quasi-2D nature of the cuprates, screening is found to anomalously enhance the el-ph contribution to d-wave pairing. This result is then considered in light of the material and doping dependence of Tc and a framework for understanding the materials variations in Tc is presented. From these studies, a detailed picture of the role of the el-ph interaction in the doped cuprates emerges where the interaction, working in conjunction with a dominant pairing interaction, provides much of the materials variations in Tc observed across the cuprate families. Turning towards numerical techniques, small cluster calculations are presented which examine the effects of a local oxygen dopant in an otherwise ideal Bi2Sr2CaCu2O8+δ crystal. Here, it is demonstrated that the dopant locally enhances electronic properties such as the antiferromagnetic exchange energy J via local el-ph coupling to planar local oxygen vibrations. Finally, in an effort to extend the scope of this work to the underdoped region of the phase diagram, an examination of the properties of the single-band Hubbard and Hubbard-Holstein model is carried out using Determinant Quantum Monte Carlo. Here focus is placed on the spectral properties of the model as well as the competition between the the antiferromagnetic and charge-density-wave orders. As with the small cluster calculations, a strong interplay between the magnetic and lattice properties is observed.
83

Physical properties of layered superconductors from angle-resolved photoemission spectroscopy (ARPES)

Evtushinsky, Daniil 06 June 2012 (has links) (PDF)
This thesis is devoted to studies of high temperature superconductors and related materials using the angle-resolved photoemission spectroscopy (ARPES). Though there is no accepted theory of superconductivity, encompassing high-$T_{\\rm c}$ materials, there is enough evidence to believe that superconductivity can always be interpreted as stemming from pairing of electrons by interaction with bosons, and $T_{\\rm c}$ is determined by effectiveness of such a pairing. ARPES, owing to the possibility of recording energy- and momentum-resolved electronic spectrum, is a powerful probe of the normal-state electronic structure, which is an important prerequisite for the superconductivity, and implications of the electron pairing, such as emergence of the superconducting gap and finer features below $T_{\\rm c}$. Based on ARPES data one can quantify the electronic interactions by analysis of kinks in the dispersion curves, spectral line widths etc. In current work new methods of ARPES data analysis were developed and applied to the spectra taken from cuprate and iron-based high-$T_{\\rm c}$. The possibility to analyze the macroscopic response of solids in the normal state as well as in the superconducting and charge-density-wave phases basing on the experimentally measured renormalized band dispersion and anisotropic superconducting and charge-density-wave gap was shown. The thesis consists of five parts. Part 1 introduces the employed notions of electrons in solids and methods of their investigation. Part 2 describes the Voigt fitting procedure, allowed for purification of the spectra from resolution effects, and, consequently, for determination of the quasiparticle scattering rate with enhanced precision. In Part 3 the calculation of the temperature-dependent Hall coefficient in the charge-density-wave-bearing 2H-TaSe$_2$ from the band dispersion, measured in ARPES, is presented, and comparison to the independent magnetotransport measurements is shown. The extraction of the band dispersion of Ba$_{1-x}$K$_{x}$Fe$_2$As$_2$ and LiFeAs from ARPES data can be found in Part 4. Agreement with Hall effect measurements on the same samples is demonstrated. Part 5 introduces the extraction of the momentum-dependent superconducting gap in iron arsenides from fitting of ARPES spectra to Dynes function. The superfluid density was calculated from the band dispersion and the superconducting gap, measured in ARPES, and compared to the ones measured by different techniques.
84

Design of an Inverse Photoemission Spectrometer for the Study of Strongly Correlated Materials

McMahon, Christopher January 2012 (has links)
The design and construction of a state-of-the-art ultra-high vacuum spectrometer for the performance of angle-resolved inverse photoemission spectroscopy is presented. Detailed descriptions of its most important components are included, especially the Geiger-Muller ultraviolet photodetectors. By building on recent developments in the literature, we expect our spectrometer to achieve resolution comparable or superior to that of other prominent groups, and in general be one of the foremost apparatus for studying the momentum dependence of the unoccupied states in strongly correlated materials. Summaries of the theory of angle-resolved inverse photoemission spectroscopy and the basics of ultra-high vacuum science are also included.
85

Physics And Technology Of The Infrared Detection Systems Based On Heterojunctions

Aslan, Bulent 01 March 2004 (has links) (PDF)
The physics and technology of the heterojunction infrared photodetectors having different material systems have been studied extensively. Devices used in this study have been characterized by using mainly optical methods, and electrical measurements have been used as an auxiliary method. The theory of internal photoemission in semiconductor heterojunctions has been investigated and the existing model has been extended by incorporating the effects of the difference in the effective masses in the active region and the substrate, nonspherical-nonparabolic bands, and the energy loss per collisions. The barrier heights (correspondingly the cut-off wavelengths) of SiGe/Si samples have been found from their internal photoemission spectrums by using the complete model which has the wavelength and doping concentration dependent free carrier absorption parameters. A qualitative model describing the mechanisms of photocurrent generation in SiGe/Si HIP devices has been presented. It has been shown that the performance of our devices depends significantly on the applied bias and the operating temperature. Properties of internal photoemission in a PtSi/Si Schottky type infrared detector have also been studied. InGaAs/InP quantum well photodetectors that covers both near and mid-infrared spectral regions by means of interband and intersubband transitions have been studied. To understand the high responsivity values observed at high biases, the gain and avalanche multiplication processes have been investigated. Finally, the results of a detailed characterization study on a systematic set of InAs/GaAs self-assembled quantum dot infrared photodetectors have been presented. A simple physical picture has also been discussed to account for the main observed features.
86

Design of an Inverse Photoemission Spectrometer for the Study of Strongly Correlated Materials

McMahon, Christopher January 2012 (has links)
The design and construction of a state-of-the-art ultra-high vacuum spectrometer for the performance of angle-resolved inverse photoemission spectroscopy is presented. Detailed descriptions of its most important components are included, especially the Geiger-Muller ultraviolet photodetectors. By building on recent developments in the literature, we expect our spectrometer to achieve resolution comparable or superior to that of other prominent groups, and in general be one of the foremost apparatus for studying the momentum dependence of the unoccupied states in strongly correlated materials. Summaries of the theory of angle-resolved inverse photoemission spectroscopy and the basics of ultra-high vacuum science are also included.
87

Energies of rare-earth ion states relative to host bands in optical materials from electron photoemission spectroscopy

Thiel, Charles Warren. January 2003 (has links) (PDF)
Thesis (Ph. D.)--Montana State University--Bozeman, 2003. / Typescript. Chairperson, Graduate Committee: Rufus L. Cone. Includes bibliographical references (p. 361-380).
88

Zeitaufgelöste Photoemissionsspektroskopie an Au-GaAs Schottky-Kontakten Time-resolved photoemission-spectroscopy of Au-GaAs Schottky-Contacts /

Hofmann, Michael. January 1900 (has links)
Würzburg, Univ., Dipl.-Arbeit, 2001.
89

Combined Photo- and Thermionic Electron Emission from Low Work Function Diamond Films

January 2013 (has links)
abstract: In this dissertation, combined photo-induced and thermionic electron emission from low work function diamond films is studied through low energy electron spectroscopy analysis and other associated techniques. Nitrogen-doped, hydrogen-terminated diamond films prepared by the microwave plasma chemical vapor deposition method have been the most focused material. The theme of this research is represented by four interrelated issues. (1) An in-depth study describes combined photo-induced and thermionic emission from nitrogen-doped diamond films on molybdenum substrates, which were illuminated with visible light photons, and the electron emission spectra were recorded as a function of temperature. The diamond films displayed significant emissivity with a low work function of ~ 1.5 eV. The results indicate that these diamond emitters can be applied in combined solar and thermal energy conversion. (2) The nitrogen-doped diamond was further investigated to understand the physical mechanism and material-related properties that enable the combined electron emission. Through analysis of the spectroscopy, optical absorbance and photoelectron microscopy results from sample sets prepared with different configurations, it was deduced that the photo-induced electron generation involves both the ultra-nanocrystalline diamond and the interface between the diamond film and metal substrate. (3) Based on results from the first two studies, possible photon-enhanced thermionic emission was examined from nitrogen-doped diamond films deposited on silicon substrates, which could provide the basis for a novel approach for concentrated solar energy conversion. A significant increase of emission intensity was observed at elevated temperatures, which was analyzed using computer-based modeling and a combination of different emission mechanisms. (4) In addition, the electronic structure of vanadium-oxide-terminated diamond surfaces was studied through in-situ photoemission spectroscopy. Thin layers of vanadium were deposited on oxygen-terminated diamond surfaces which led to oxide formation. After thermal annealing, a negative electron affinity was found on boron-doped diamond, while a positive electron affinity was found on nitrogen-doped diamond. A model based on the barrier at the diamond-oxide interface was employed to analyze the results. Based on results of this dissertation, applications of diamond-based energy conversion devices for combined solar- and thermal energy conversion are proposed. / Dissertation/Thesis / Ph.D. Physics 2013
90

Cálculo de espectros de fotoemissão por raios-x de íons adsorvidos em metais. / X-ray photoemission spectra calculation of ions adsorbed on metallic surfaces.

Marisa Andreata Whitaker 14 October 1983 (has links)
Espectros de foto-emissão são calculados com um modelo simples para a adsorção química em superfícies metálicas. Neste modelo já discutido por outros autores, o metal é representado por uma banda de condução semipreenchida e o íon adsorvido por dois níveis: um nível profundo, inicialmente ocupado pelo fotoelétron e o segundo, um nível ressonante, um orbital do átomo adsorvido o qual, atraído pelo potencial do buraco profundo, é deslocado para abaixo da energia de Fermi. O cálculo, baseado nas técnicas de grupo de renormalização desenvolvidas por Wilson para resolver o problema Kondo, considera pela primeira vez a interação eletrostática entre o buraco profundo e os estados de condução. Os resultados mostram que esta interação reduz efetivamente o acoplamento entre o nível ressonante e a banda de condução, e, portanto, modifica qualitativamente os espectros de foto-emissão. / X-Ray Photoemission spectra (XPS) are calculated for a simple model for chemisorptions on metallic surfaces. In the spineless model, already discussed by other authors, the metal is represented by a half-filled conduction band and the adsorbed ion by two levels, one representative of a deep core state initially occupied by the photoelectron and the second, a resonant level, of an initially empty adsorbate orbital which, attracted by the core hole potential, is dragged below the Fermi energy. The calculation based on the renormalization group techniques devised by Wilson to analyze the Rondo problem, accounts for the first time for the electrostatic interaction between the core hole and the conduction states. The results show that this interaction effectively narrows the coupling between the resonant level and the conduction band and hence changes qualitatively the photoemission spectra.

Page generated in 0.074 seconds