• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 14
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Tailoring Biomass for Light Active Compounds and Materials

Singathi, Ravichandranath 06 August 2020 (has links)
No description available.
12

Uso de benzodioxolas em sistemas de fotoiniciação de adesivos odontológicos / Thesis (Doctorate) Post Graduate Program, School of Dentistry, Federal University of Pelotas / RS, Brazil

Lima, Giana da Silveira 10 July 2009 (has links)
Made available in DSpace on 2014-08-20T14:30:12Z (GMT). No. of bitstreams: 0 Previous issue date: 2009-07-10 / The objective of this study was to evaluate the effectiveness of benzodioxole derivatives as co-initiators of radical polymerization of experimental self-etching adhesive systems. To compose the experimental self-etching adhesive systems a primer, containing methacrylate monomers and solvents, was developed. A monomer mixture, based on 50 wt % of Bisphenol A glicidyl dimethacrylate (Bis-GMA), 25 wt% of triethyleneglycol dimethacrylate (TEGDMA) and 25 wt% of 2-hydroxyethyl methacrylate(HEMA), was used as a model dental adhesive resin. Camphorquinone (CQ) 1 mol % was used as a photoinitiator to initiate polymerization. Different co-initiators (1,3- benzodioxole and piperonyl alcohol) and concentrations (0.25, 0.50, 1, 2, 4, 8, 16 mol %) were used in a model dental adhesive resin, to compose the experimental groups. Additionally, tertiary amine (EDAB) was used as co-initiator in the control group. The physical, chemical and mechanical properties and characteristics of the polymer obtained for the experimental adhesives (ABDO, APA, AEDAB) were evaluated using polymerization kinetics, sorption and solubility, flexural strength and elastic modulus. The microtensile bond strength (µTBS) to enamel and dentin, and fracture mode were investigated. Adicionalmente morphological analysis of the dentin bonding Interface were evaluated. The results indicated that the BDO and PA were effective co-initiators for the photoinitiator system based on CQ. Comparisons between the benzodioxole derivative co-initiators and traditionally used amine EDAB, showed similar performance in the kinetics of polymerization, flexural strength, water sorption and solubility of the model dental adhesive resin evaluated. In the microtensile bond strength dentin means were higher than enamel and mixed failures were predominant. APA showed higher bond strengths than AEDAB, while ABDO showed intermediate data. The hybrid layer for all groups was shown to be shallow (1-2 µm thick). No appreciable differences in homogeneity were detected along the bonded interface. BDO and PA were feasible alternatives to conventional amine as co-initiator of radical polymerization, moreover, as these benzodioxoles are found in the human diet, this characteristic made them more promising and advantageous to use in dental adhesive resin formulations than amine. / O objetivo deste estudo foi avaliar a efetividade de componentes derivados de benzodioxolas, como co-iniciadores da polimerização radicalar de um adesivo autocondicionante experimental. Para compor sistemas adesivos autocondicionantes experimentais foi desenvolvido um primer, composto por monômeros metacrilatos e solventes. O adesivo foi formulado utilizando uma resina adesiva modelo, composta por 50% de bisfenol A glicidil dimetacrilato (Bis-GMA), 25% de 2-hidroxietil metacrilato (HEMA) e 25% de trietilenoglicol dimetacrilato (TEGDMA), em massa. Canforoquinona (CQ) na concentração 1% molar foi utilizada como fotoiniciador da polimerização da resina modelo. Os grupos experimentais foram formulados com diferentes coiniciadores na resina adesiva: 1,3-benzodioxola (BDO) e álcool piperonílico (AP), em diferentes concentrações molares (0.25, 0.50, 1, 2, 4, 8, 16 %). Adicionalmente um grupo com amina terciária, etil,4-dimetilamino benzoato (EDAB) como co-iniciador, foi formulado como controle. Características e propriedades físicas, químicas e mecânicas do polímero obtido pelos adesivos experimentais foram avaliadas utilizando as metodologias de cinética de polimerização, sorção e solubilidade, resistência à flexão e módulo de elasticidade. A resistência de união à microtração (MPa) ao esmalte e à dentina, com a caracterização do tipo de fratura foi investigada. Adicionalmente, análise morfológica da interface adesiva em dentina foi avaliada. Os resultados indicaram que o BDO e PA foram co-iniciadores efetivos para sistemas fotoiniciadores à base de canforoquinona (CQ). Comparações entre os adesivos experimentais com co-iniciadores derivados de benzodioxolas (ABDO e AAP) e amina (AEDAB), mostraram performance similar na avaliação da cinética de polimerização, resistência à flexão, sorção e solubilidade da resina adesiva modelo avaliada. Na avaliação da resistência de união ao esmalte e à dentina, foi detectada diferença estatística e houve predominância de falhas mistas. APA apresentou maior resistência de união que AEDAB, enquanto ABDO mostrou resultados intermediários. A camada híbrida para todos os grupos apresentou uma espessura entre 1 e 2 Vm. Não foi observada diferença na homogeneidade da interface adesiva em dentina. BDO e PA se revelaram alternativas viáveis à amina como co-iniciadores para a polimerização radicalar. Ademais, estas benzodioxolas são mais promissoras e vantajosas que as aminas, por sua biocompatibilidade e presença na dieta humana
13

Design and Development of Microstereolithography (MSL) System and Its Applications in Microfabrication of Polymer and Ceramic Structures

Goswami, Ankur January 2013 (has links) (PDF)
In the present era where MEMS (Micro Electro-Mechanical Systems) technology is in¬evitable from the perspective of applications in non-silicon based micro-devices (such as biosensors, microfluidics, microvalves etc.), it is imperative to develop different micro¬fabrication technologies which are simple in operation, have low operational cost and high versatility in terms of incorporating different materials. The microfabrication tech¬nologies (e.g: bulk micromachining, surface micromachining, X-ray LIGA (lithoqraphie galvanoformung abformung) etc.), which exist commercially are mostly limited to sili¬con based technologies. They are either constrained in fabricating complex geometry in micro dimension or have high operational cost. Microstereolithography (MSL) is one such rapid prototyping technique, which can satisfy the above requirements to a larger extent. MSL h8B evolved in the l8Bt decade from conventional stereolithographic (SLA) technique, which involves the free-form microfabrication of a UV sensitive liquid resin layer by layer photo-polymerization process, when it is exposed to UV irradiation accord¬ing to the predefined CAD (Computer Aided Design). However, this technique is not limited to polymer microfabrication and it h8B an immense potential to fabricate com¬plex 3D structures of ceramics in micro dimension. In this thesis, the primary focus is on developing an in house built scanning b8Bed MSL system indigenously and to explore the possibility of micro fabrication of different materials (from polymer to ceramics involving different routes. In addition, polymer micro cantilever h8B been fabricated using this technique and its application to surface stress me8Burement h8B been demonstrated. The thesis comprises of eight chapters. The following section describes the summary of the individual chapters. Chapter 1 describes the introduction and background literature of this technol¬ogy. A brief review on MSL technology developed by various research groups and their achievements h8B been listed. Since photopolymerizable resin is the primary material to fabricate micro dimensional structures, the rate of photopolymerization is an impor¬tant phenomena which requires an attention before choosing the photopolymerizable resin. Further, this chapter also describes the photoinitiation principles and the type of photo initiators (PI) which help to photopolymerize the resin in order to fabricate micro dimensional polymer structures. In addition, this chapter also gives a glimpse of applications of this technology in fabrication of micro cantilever b8Bed sensors. The later part of the chapter focused on the microfabrication of ceramic from colloidal and met¬alorganic routes in brief. In Chapter 2, the design of the in house built MSL system and its working princi¬ples including various optical issues have been addressed. Several research groups have attempted to optimize photopolymerization parameters to incre8Be the throughput of the scanning b8Bed MSL systems through modified beam scanning techniques. Efforts in reducing the curing line width in order to get low feature size have been implemented through high numerical aperture (NA) optical setups. However, the intensity contour symmetry and the depth of field of focus have led to grossly non-vertical and non-uniform curing profiles. The focus of the work h8B been to exploit the rich potential of photoreactor scanning system in achieving desired fabrication modalities (minimum curing width, uniform depth profile, and vertical curing profile) even with a reduced NA optical setup and a single movable stage. The present study tries to manipulate to its advantage the effect of optimized lower photoinitiator (PI) concentration ([c]) in reduc¬ing the minimum curing width to 10-15 jJm, even with the higher spot size (21.4 jJm) rv through a judiciously chosen gmonomer UPIi' system. In this chapter, two different cl8BS of multifunctional acrylates (1,6 Hexane diol diacrylate (HDDA) and Trimethylol propanetriacrylate (TMPTA)) and one monofunctional methacrylate (methyl mathacry¬late (MMA)) have been chosen to explore their fabricability in micro dimensions using this MSL technology, by varying the various operational parameters including the type and the concentration of the PI. Chapter 3 deals with the application of this technology in micro cantilever based sensors. Microcantilever based sensors have been explored for several decades for their application in bio-molecular or explosive detection, chemical sensing etc. Due to the adsorption of molecular species on the cantilever surface, differential surface stress gen¬erates between the top and bottom surface of the cantilever. Depending on the type of stress (tensile or compressive) generated, the cantilever bends accordingly. The, novel diffraction based deflection method has been proposed in order to measure the deflection profile accurately for low dimensional structures. To prove this method, a dual mi¬crocantilever structure with sufficiently low gap (100 f.lm) has been fabricated using the developed MSL set up, such that diffraction occurs during transillumination by spherical wavefronts. Among the two micro cantilevers one was fabricated bent with a specific di¬mension with respect to the other. The cantilever material was chosen as poly HDDA for its low elastic modulus in order to achieve high sensitivity. From the obtained diffraction pattern, the bent profile of the each cross section of one cantilever corresponding to the other has been measured. This proposition will enable to measure surface stress at each cross section of the cantilever depending on the adsorbed analyte molecule adsorption. In Chapter 4, an effort has been made to improve the thermal, thermo mechanical and mechanical properties of the cantilever material (poly HDDA). The sensitivity of a micro cantilever depends precisely on fabrication and material aspects. The former de¬pends on the aspect ratio of the structure and can be controlled by fabrication parameters whereas the latter is inherently limited by the choice of the material. The properties of the material which impact the applicability are elastic modulus, Poisson's ratio, thermal expansion and thermal stability. Hence, these properties are studied for poly HDDA. However, the properties are not completely satisfactory for only poly HDDA (PHDDA) since, PHDDA will fail for high surface stress measurement (>275 mN/m). Hence, it h8B been copolymerized with MMA with an intention to improve the above mentioned properties and to determine the best composition for the micro cantilever application. It is observed by Finite Element Analysis (FEM) that Phpm5050 (HDDA:MMA(50:50)) composition shows optimum sensitivity when reliability is concerned for me8Buring high surface stress (275 mN/m). Chapter 5 bridges Chapter 2 and Chapter 6. Chapter 2 highlights the polymer mi¬crofabrication where8B, Chapter 6 deals with the microfabrication of ceramics. In order to fabricate ceramic micro objects by MSL, ceramic particles need to be blended with a photopolymerizable monomer followed by l8Ber induced photopolymerization . Under l8Ber irradiation, the monomer gets cured and traps the ceramic particles. Thus near net shape of green ceramic structures are 0 btained. After achieving the near net shape, it is important to remove the polymer, which acts 8B the binder for the green ceramic body. This debinding should be diffusion controlled so 8B to achieve defect free micro ceramics. Here two multifunctional monomers (HDDA and TMPTA) have been chosen 8B a b8Be monomer for fabricating ceramics. Therefore it is essential to understand the debinding mechanism of these polymers. However, (HDDA) h8B high shrinkage upon polymeriza¬tion with low rate of polymerization kinetics and low viscosity where8B the properties of (TMPTA) are exactly opposite. Hence, in order to optimize these properties, copoly¬merization of HDDA and TMPTA h8B been carried out for different compositions and their thermal properties have been investigated to understand the degradation mech¬anism. This chapter deals with the mechanism of thermal degradation by model free kinetic methods with an intention to determine the optimum composition of HDDA and TMPTA copolymer, to used 8B the b8Be monomer material for ceramic microfabrication. Besides, the debinding strategy is also discussed b8Bed on the degradation profile of the optimum composition. TH20S0(TMPTA: HDDA(20:S0)) is found to be the ideal com¬position to fabricate ceramic micro-component by MSL since its degradation is diffusion controlled in N 2 atmosphere. Chapter 6 describes the methodology of microfabrication of ceramics by the de-veloped MSL technique. A colloidal approach has been adopted to fabricate ceramics in micro-dimensions. Two different ceramics have been chosen, which have potential applications in structural (alumina) and functional (Lead Iron Niobate (PFN))aspects. Before fabricating ceramic micro-objects, ceramic particles need to be blended in the monomer suspension in the presence of dispersant at an optimum solids loading. Opti¬mization of solids loading is important in view of low dimensional shrinkage after sin¬tering. However, lower loading leads to higher shrinkage whereas higher loading would increase the viscosity of the suspension and make the suspension inconvenient to deal with. Hence, rheological studies have been carried out to optimize the solids loading and dispersant concentration. 40 vol% alumina and 35 vol% PFN are found to be the highest achievable solids loading for the chosen monomer (TH2080) composition. This chapter also describes the limitation involved in ceramic microfabrication depending on their scattering factors during laser irradiation. The chapter demonstrates the fabrica¬tion methodology of several complex ceramic(alumina and PFN) micro-objects by the in house built MSL instrument. Chapter 7 investigates the possibility of microfabrication of ceramics from metalor¬ganic precursor. In this route, titanium metal-organic (Ti-n butoxide) precursor has been chosen which is stabilized by the addition of chelating monomer (2-( methacryloyloxy) ethyl acetoacetate). Following this, the crosslinker and photoinitiators have been added to form Ti photoresist which is coated on top of the bare silicon substrate by spin coating to achieve specific thickness. The coated silicon wafer by the above photoresist has been patterned by selectively exposure in the MSL setup. The cured patterns are washed and heat treated at high temperature in order to 0 btain the net shape of the Ti02 pattern of polycrystalline rutile phase. It is observed this route is advantageous in terms of reduc¬ing curing dimension (curing width 14 f.lm) than the colloidal route (curing width more than 80 f.lm ) of fabrication of ceramics where the scattering factor greatly influences the dimensions of the feature size. The key findings and future aspects are summarized in the Chapter 8. The work reported in this thesis has been carried out by the candidate as part of the Ph.D. programme. He hopes that this would constitute a worthwhile contribution towards developing an MSL technique and its aspects in micro fabrication of polymer and ceramic structures of any complex shape and its possible applications in microdevices.
14

Etude de nouveaux systèmes amorceurs pour des polymérisations radicalaires ou cationiques / Study of a new initiating systems for radical or cationic polymerization

Tehfe, Mohamad Ali 16 September 2011 (has links)
Le point clé des polymérisations radicalaires et/ou cationiques réside dans la génération des radicaux et/ou des cations qui amorcent la réaction. Ces derniers sont formés par transformation, via absorption de lumière, d’un composé photosensible. Puisque la majorité des réactions de polymérisation se produisent en système ouvert, on conçoit l’importance de trouver des solutions aux inconvénients liés à la présence de l’air lors de la réticulation. Durant ce travail, de nouvelles séries de molécules de type silanes, germanes, complexes boranes ... ont été examinées. On va s’intéresser aussi aux systèmes d’amorçage de type I et II. Nous nous intéresserons aussi à la polymérisation induite par la lumière visible ou solaire. Notre objectif consiste à développer des systèmes dont la sensibilité spectrale s’étend vers de grandes longueurs d’onde. Les molécules étudiées au cours de ce travail semblent être très favorables en tant que photoamorceurs ou co-amorceurs pour la polymérisation radicalaire ainsi que pour la polymérisation cationique. La plupart de ces structures se sont montrées plus efficaces que les références utilisées. Le travail de cette thèse s’articule autour de deux grandes parties : La première partie relative à la polymérisation radicalaire contient également une étude bibliographique et se divise en trois chapitres. La deuxième partie relative à la polymérisation cationique se divise en sept chapitres. Une annexe sera donnée à la fin de ce manuscrit et regroupe les différentes techniques expérimentales. / The key point of radical and/or cationic polymerization is the generation of radicals and/or cations that initiate the reaction. These are formed by transformation via light absorption of a photosensitive compound. Since the majority of polymerization reactions occur in an open system, we can understand the importance of finding solutions to the disadvantages associated with the presence of air during the crosslinking. During this work, new series of molecules of silanes, germanes, boranes ... were examined. Were also interested by the polymerization induced by visible light. Our objective is to develop systems whose spectral sensitivity extends to longer wavelengths. This work consists in two main parts: The first part on the radical polymerization also contains a literature review and is divided into three chapters. The second part on the cationic polymerization is divided into seven chapters. An appendix will be given at the end of this manuscript and includes the various experimental techniques.

Page generated in 0.0622 seconds