• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 430
  • 215
  • 166
  • 21
  • 20
  • 20
  • 19
  • 17
  • 8
  • 7
  • 6
  • 5
  • 5
  • 4
  • 2
  • Tagged with
  • 1062
  • 179
  • 165
  • 158
  • 152
  • 120
  • 116
  • 106
  • 95
  • 95
  • 92
  • 83
  • 80
  • 77
  • 71
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
621

Synthetic and Photochemical Study of Ruthenium Polypyridine Solar Dyes Coupled to Cadmium Selenide Quantum Dots

Carlson, Jill A. 18 June 2012 (has links)
No description available.
622

Photoluminescence and Extended X-ray Absorption Fine Structure Studies on CdTe Material

Liu, Xiangxin 20 June 2006 (has links)
No description available.
623

Fundamentals and Applications of Visible Plasmonics: from Material Search to Photoluminescence Enhancement / 可視プラズモニクスの基礎と応用:物質探索から発光増強まで

Takekuma, Haruka 23 May 2022 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第24074号 / 理博第4841号 / 新制||理||1692(附属図書館) / 京都大学大学院理学研究科化学専攻 / (主査)教授 寺西 利治, 教授 島川 祐一, 教授 倉田 博基 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
624

Down-shifting of Light by Ion Implanted Samples for Photovoltaic Applications

Savidge, Rachel M. 10 1900 (has links)
<p>Single junction silicon photovoltaic cells (SJSPVCs) are unable to transform all the energy in the solar spectrum into electricity, due to the broad nature of the solar spectrum and the limits imposed by a single bandgap. Furthermore, high surface recombination velocity reduces the SJSPVC external quantum efficiency response, particularly to ultraviolet photons. It is the goal of spectral engineering to optimize the light that is incident on the cell, by down-shifting high energy photons to lower energies, for example, to improve the performance of photovoltaic cells.</p> <p>This thesis represents a study into the luminescence of ion implanted films, involving silicon nanocrystals (Si-NCs) and rare-earth ions in fused silica or silicon nitride. Quantum efficiency measurements taken with an integrating sphere were used to characterize some of the samples. Other photoluminescence (PL) characterization work was carried out with a single-wavelength laser and a collection lens normal to the sample. Variable angle spectroscopic ellipsometry (VASE) was used to estimate the optical constants of the implanted films. In secondary work, Rutherford backscattering spectrometry, time-dependent PL, infrared-PL measurements, and electrical conductivity measurements were used to characterize select samples.</p> <p>It was found that the conversion efficiency of Si-NCs in fused silica was about 1% – too low to be useful according to modeled results. However, considerable variation in the peak wavelength of the Si-NC PL was obtained, depending on the peak concentration of implanted silicon. Si-NC-type PL was also produced by low-energy implantation of oxygen into a Czochralski silicon wafer.</p> <p>Oxygen was also implanted into films of cerium-doped high-purity silicon nitride, and it was shown that the photoluminescence from these films is largely dependent on the level of oxygen doping. The internal conversion efficiency of a cerium-doped fused silica sample was found to approach 20%, which indicates that this is a promising avenue for future research.</p> <p>Finally, energy transfer was demonstrated between Si-NCs and erbium ions. The lifetime of the erbium PL appears to increase with increasing implanted silicon fluence.</p> / Master of Applied Science (MASc)
625

SPECTRAL ENGINEERING VIA SILICON NANOCRYSTALS GROWN BY ECR-PECVD FOR PHOTOVOLTAIC APPLICATIONS

Sacks, Justin 10 1900 (has links)
<p>The aim of third-generation photovoltaics (PV) is ultimately to achieve low-cost, high-efficiency devices. This work focused on a third-generation PV concept known as down-shifting, which is the conversion of high-energy photons into low-energy photons which are more useful for a typical solar cell. Silicon nanocrystals (Si-NCs) fabricated using electron-cyclotron resonance plasma-enhanced chemical vapour deposition (ECR-PECVD) were studied as a down-shifting material for single-junction silicon cells. A calibration was done to determine optimal deposition parameters for Si-NC formation. An experiment was then done to determine the effect of film thickness on emission, optical properties, and photoluminescence quantum efficiencies.</p> <p>Photoluminescence (PL) peaks varied depending on the stoichiometry of the films, ranging from approximately 790 nm to 850 nm. Variable-angle spectroscopic ellipsometry was used to determine the optical constants of the Si-NC films. The extinction coefficients indicated strong absorption below 500 nm, ideal for a down-shifting material. Transmission Electron Microscopy (TEM) was used to determine the size, density, and distribution of Si-NCs in two of the films. Si-NCs were seen to have an average diameter of approximately 4 nm, with larger nanocrystals more common near the surface of the film. A density of approximately 10<sup>5</sup> nanocrystals per cubic micron was approximated from one of the TEM samples.</p> <p>The design and implementation of a PL quantum efficiency measurement system was achieved, using an integrating sphere to measure the absolute efficiency of Si-NC emission. Internal quantum efficiencies (IQE) as high as 1.84% and external quantum efficiencies (EQE) of up to 0.19% were measured. The EQE was found to increase with thicker films due to more intense photoluminescence; however the IQE remained relatively independent of film thickness.</p> / Master of Applied Science (MASc)
626

Sulfur Passivation of III-V Semiconductor Nanowires

Tajik, Nooshin 04 1900 (has links)
<p>An ammonium polysulfide (NH<sub>4</sub>)<sub>2</sub>S<sub>x</sub> solution was optimized through a series of experiments to be used for surface passivation of III-V nanowires . The effectiveness of sulfur passivation was investigated by measuring the photoluminescence from p-InP nanowires before and after passivation. The optimized parameters included solvent type, molarity and passivation time. According to the experiments, passivation of nanowires in 0.5 M solution diluted in isopropyl alcohol for 5 min produced the maximum photoluminescence improvement. It was also demonstrated that the whole surface passivation of vertical nanowires in ensemble samples caused a 40 times increase in the photoluminescence intensity while top surface passivation of individual nanowires resulted in a 20 times increase of photoluminescence intensity. A model was developed to calculate the photoluminescence from single nanowires under different surface recombination and surface potential. The model showed that the 40 times increase in the photoluminescence is mainly due to the reduction of surface state density from 10<sup>12</sup> cm<sup>-2 </sup>before passivation to 5×10<sup>10</sup> cm<sup>-2 </sup>after passivation.</p> <p>The effect of sulfur passivation on core-shell p-n junction GaAs nanowire solar cells has been investigated. The relative cell efficiency increased by 19% after passivation.</p> / Doctor of Philosophy (PhD)
627

Luminescent Silicon Carbonitride Thin Films Grown using ECR PECVD: Fabrication and Characterization

Khatami, Zahra January 2017 (has links)
McMaster University DOCTOR OF PHILOSOPHY (2017) Hamilton, Ontario (Engineering Physics) TITLE: Luminescent Silicon Carbonitride Thin Films Grown using ECR PECVD: Fabrication and Characterization AUTHOR: Zahra Khatami , M.A.Sc. (Shahid Behehsti University) SUPERVISOR: Professor Peter Mascher NUMBER OF PAGES: xx, 268 / Silicon, the cornerstone semiconductor of microelectronics, has seen growing interest as a low-cost material in photonics. Nanoscience has employed various strategies to overcome its fundamentally inefficient visible light emission such as developing new silicon-based nanostructures and materials. Each of the proposed materials has its own advantages and disadvantages in attempting to reach commercialization. Silicon carbonitride (SiCxNy) is a less-studied and multi-functional material with tunable optical features. Despite reports on promising mechanical properties of SiCxNy thin films, they have not yet been well explored optically. This thesis presents the first in-depth analysis of the luminescent properties of SiCxNy thin films at a broad range of compositions and temperatures. To better understand this ternary structure, the reported data of the two fairly well studied binary structures was used as a reference. Therefore, three classes of silicon-based materials were produced and explored; SiCxNy, SiNx, and SiCx. Samples were fabricated using one of the common methods in the semiconductor industry; electron cyclotron resonance plasma enhanced chemical vapour deposition (ECR PECVD). A multitude of characterization techniques were utilized including; optical methods (ultraviolet-visible spectroscopy (UVVIS), variable angle spectroscopic ellipsometry (VASE), photoluminescence (PL)) and structural techniques (elastic recoil detection (ERD), Rutherford backscattering spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), high-resolution transmission electron microscopy (HR-TEM)). In view of the exploring of emission properties of SiCxNy materials, our approach was towards the enhancement of the visible emission by adjusting the film composition and subsequent thermal treatment. First, a systematic study of the influence of carbon on the optical, compositional, and structural properties of SiCxNy was carried out. This investigation was followed by an exploration of influence of growth conditions on the visible emission and its connection with the other film properties including hydrogen concentration, microstructure, and composition. In addition, hydrogen diffusion was explored and associated with two featured annealing temperatures. The key element of this thesis is the comprehensive report on the interdependency of the visible light emission and all optical, structural, and compositional features of SiCxNy structures. Unlocking the potential of this ternary and less studied material can appeal to the silicon photonics community to implement it in anti-reflection, solar cell, and sensing applications, and in particular as a substitution of SiNx used in existing microelectronic devices. / Thesis / Doctor of Philosophy (PhD)
628

Optical studies of GaAs:C grown at low temperature and of localized vibrations in normal GaAs:C

Vijarnwannaluk, Sathon 03 May 2002 (has links)
Optical studies of heavily-doped GaAs:C grown at low temperature by molecular beam epitaxy were performed using room-temperature photoluminescence, infrared transmission, and Raman scattering measurements. The photoluminescence experiments show that in LT-GaAs:C films grown at temperatures below 400 °C, nonradiative recombination processes dominate and photoluminescence is quenched. When the growth temperature exceeds 400 °C, band-to-band photoluminescence emission appears. We conclude that the films change in character from LT-GaAs:C to normal GaAs:C once the growth temperature reaches 400 °C. Annealing, however, shows a different behavior. Once grown as LT-GaAs:C, this material retains its nonconducting nonluminescing LT characteristics even when annealed at 600 °C. The Raman-scattering measurements showed that the growth temperature and the doping concentration influence the position, broadening, and asymmetry of the longitudinal-optical phonon Raman line. We attribute these effects to changes in the concentration of interstitial carbon in the films. Also, the shift of the Raman line was used to estimate the concentration of arsenic-antisite defects in undoped LT-GaAs. The infrared transmission measurements on the carbon-doped material showed that only a fraction of the carbon atoms occupy arsenic sites, that this fraction increases as the growth temperature increases, and that it reaches about 100% once the growth temperature reaches 400 °C. The details of all these measurements are discussed. Infrared transmission and photoluminescence measurements were also carried out on heavily-doped GaAs:C films grown by molecular beam epitaxy at the standard 600 C temperature. The infrared results reveal, for dopings under 5 x 10⁹ cm⁻³, a linear relation between doping concentration and the integrated optical absorption of the carbon localized-vibrational-mode band. At higher dopings, the LVM integrated absorption saturates. Formation of C<sub>As</sub>-C<sub>As</sub> clusters is proposed as the mechanism of the saturation. The photoluminescence spectra were successfully analyzed with a simple model assuming thermalization of photoelectrons to the bottom of the conduction band and indirect-transition recombination with holes populating the degenerately doped valence band. The analysis yields the bandgap reduction and the Fermi-level-depth increase at high doping. / Ph. D.
629

Deterministic localization and modulation of single photon emitters in multilayer gallium selenide

Luo, Weijun 23 July 2024 (has links)
Single-photon emitters (SPEs) are quantum systems that can produce individual photons when excited. These photons can be manipulated in their polarization states to encode quantum bits, which are the quantum-mechanical analogs of classical bits. SPEs are critical to the development of quantum information technology applications, including quantum communication, computing, and sensing. Despite their importance, there are currently no solid-state SPEs that meet the requirements for large-scale applications. Researchers have explored various materials hosts, including quantum dots, carbon nanotubes, and bulk semiconductors, but many challenges remain. For example, producing scalable and integrated SPEs with tunable wavelengths, high clocking rates (brightness), and single-photon purity at room temperature is still an ongoing research goal. In recent years, there has been significant research interest in single-photon emitters (SPEs) in two-dimensional (2D) Van der Waals (VdW) materials. Most research in this area has focused on SPEs in multilayer insulating hexagonal boron nitride (hBN), which can be operated at room temperature, and monolayer tungsten diselenide (WSe2), which is a direct bandgap semiconductor. The SPEs in hBN are derived from defect emission, while those in monolayer WSe2 stem from either defect or strain-bound excitons. Despite this promising research, there are critical challenges that impede the development of these SPEs. For example, hBN is an insulator with a band gap of 6.0 eV, which limits electrical control, and controlling defects is difficult. Additionally, the photo-stability of monolayer WSe2 is vulnerable to environmental fluctuations, such as surface contaminants. Multilayer gallium selenide (GaSe) is another 2D Van der Waals (VdW) SPE host, and the initial experimental observation of GaSe SPEs was reported by Tonndorf. et al. in 2017.2,3 However, GaSe SPEs have received less attention compared to hBN and WSe2 for several reasons. Firstly, early reports2,3 show that GaSe SPEs arising from defects are less brighter than SPEs in WSe24 and hBN.5 Secondly, increasing the laser power for brighter GaSe SPEs would cause the formation of biexcitons, which degrades the single photon purity.2 Since 2017, to the best of our knowledge, there have been no further experimental studies conducted on overcoming those challenges to improve the performances of GaSe SPEs. In this dissertation, I present three research projects focused on addressing the challenges of developing single-photon emitters (SPEs) in multilayer gallium selenide (GaSe). First, I achieved localized bright and stable GaSe SPEs in multilayer GaSe through the manipulation of nanoscale strain. Second, I performed below-diffraction limit hyperspectral imaging of strain-localized GaSe SPEs through cathodoluminescence and demonstrated the wide spectral range tunability, significant enhancement of emission intensities controlled by nanoscale strain, as well as the robust spectral stability of GaSe SPEs. In the last project, I demonstrated a 30%-50% improvement in emission intensities of GaSe, converted non-SPEs to SPEs, and increased operating temperatures from 23 K up to 85K above cryogenic temperature through electrostatic doping. The research works in this dissertation lays a crucial foundation for future fundamental studies and the development of GaSe SPEs and their analogues.
630

Microwave-Assisted Synthesis and Photophysical Properties of Poly-Imine Ambipolar Ligands and Their Rhenium(I) Carbonyl Complexes

Salazar Garza, Gustavo Adolfo 08 1900 (has links)
The phenomenon luminescence rigidochromism has been reported since the 1970s in tricarbonyldiimine complexes with a general formula [R(CO)3LX] using conventional unipolar diimine ligands such as 2,2;-bipyridine or 1,10-phenanthroline as L, and halogens or simple solvents as X. As a major part of this dissertation, microwave-assisted synthesis, purification, characterization and detailed photoluminescence studies of the complex fac-[ReCl(CO)3L], 1, where L = 4-[4,6-bis(3,5-dimethyl-1H-pyrazol-1-yl]-N,N-diethylbenzenamine are reported. The employment of microwaves in the preparation of 1 decreased the reaction time from 48 to 2 hours compared to the conventional reflux method. Stoichiometry variations allows for selective preparation of either a mononuclear, 1, or binuclear, fac-[Re2Cl2(CO)6], 2, complex. The photophysical properties of 1 were analyzed finding that it possesses significant luminescence rigidochromism. The steady state photoluminescence emission spectra of 1 in solution shift from 550 nm in frozen media to 610 nm when the matrix becomes fluid. Moreover, a very sensitive emission spectral analysis of 0.1 K temperatures steps shows a smooth transition through the glass transition temperature of the solvent host. Furthermore, synthetic modifications to L have attained a family of ambipolar compounds that have tunable photophysical, thermophysical and other material properties that render them promising candidates for potential applications in organic electronics and/or sensors - either as is or for their future complexes with various transition metals and lanthanides.

Page generated in 0.1785 seconds