• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 427
  • 121
  • 69
  • 64
  • 36
  • 36
  • 21
  • 8
  • 8
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 932
  • 284
  • 269
  • 231
  • 224
  • 163
  • 128
  • 124
  • 115
  • 106
  • 102
  • 99
  • 97
  • 97
  • 88
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Lasers à  cristaux photoniques pour la spectroscopie infrarouge / Photonic crystal laser for infrared spectroscopy

Moumdji, Souad 14 March 2011 (has links)
Le contrôle des rejets dans l'atmosphère est une préoccupation importante de nos sociétés. Ce travail de thèse s'inscrit dans ce cadre en proposant l'étude et la réalisation de composants lasers compatibles avec des systèmes de détection de gaz polluants. La spectroscopie d'absorption par diodes laser accordables est une méthode de détection de gaz, très sensible et sélective. Elle nécessite des diodes laser fonctionnant en régime continu, à température ambiante avec une émission monofréquence et une large accordabilité. Pour répondre à ces exigences, nous proposons une géométrie originale où deux cavités laser sont couplées par un miroir à cristal photonique (CP). Le domaine du moyen infrarouge (2 à 5 µm), où de nombreuses espèces gazeuses présentent de fortes raies d'absorption, est particulièrement intéressant pour ces applications. Pour atteindre cette gamme, la famille des matériaux à base d'antimoniures est la mieux adaptée car elle permet l'obtention de composants émettant au-delà de 2 µm. Deux géométries ont été étudiées, l'une avec les CPs placés de part et d'autre du ridge, l'autre avec les CPs le traversant. Les modélisations ont montré que le second design était le plus efficace. Un enjeu majeur de cette thèse a été le développement d'un procédé technologique complet qui fait appel à des étapes de photolithographie associées à des étapes d'insolation électronique pour la définition des CPs et l'ouverture de l'isolant. Il a nécessité la mise au point de la gravure profonde des CPs. Les caractérisations des structures ont montré un fonctionnement en continu, à température ambiante. Une émission monofréquence a été obtenue. Des mesures d'absorption de méthane et de monoxyde de carbone ont validé la faisabilité de l'utilisation de ces structures dans un système de détection de gaz. / Mitigation of atmospheric emissions is an important concern for today's society. This PhD work is in keeping with this pattern by proposing to study and realize laser devices to be integrated in systems for detecting polluting gases. Tunable diode laser absorption spectroscopy is a technique for gas detection which is very sensitive and selective. It makes use of laser diodes operating in the continuous wave regime at room temperature with a single frequency emission and a large tuning range. For fulfilling these requirements, we propose an innovative design where two laser cavities are coupled by a photonic crystal mirror (PC). The mid-infrared range (2 to 5 µm), where numerous gas species have strong absorption lines, is of particular interest for these applications. The antimonide system is the best suited for reaching this wavelength range because it allows to make devices emitting beyond 2 µm.Two designs have been studied, one with PCs placed on both sides of the ridge, the other one with PCs going through the ridge. Modelling has shown that the second design is the most efficient. A major challenge in this work was to develop a complete technological process making use of photolithography steps combined with electronic insulation steps for defining the PCs and opening the insulator layer. A special care has been devoted to perfecting deep etching of the PCs. Subsequent characterizations showed that the devices work in the continuous wave regime at room temperature. Single frequency emission was obtained. Absorption measurements with methane and carbon monoxide have validated the use of these devices in a system for gas detection.
242

Design et Fabrication de plateformes nanophotoniques pour le couplage fort autour de 800 nm / Design an Fabrication of nanophotonics platforms for strong coupling around 800 nm

Saber, Ivens 04 October 2018 (has links)
Atteindre le régime de couplage fort entre des nanocavités et des systèmes atomiques est un élément clé dans l'information quantique. Durant ma thèse, j'ai designé et fabriqué des nanocavités à cristal photonique en GaInP pour le couplage fort autour de 800 nm, longueur d'onde typique des atomes du Rubidium (780 nm) et de Césium (852 nm), les plus utilisés dans le domaine, ainsi que de l'Argon (811 nm). L'objectif est de faire interagir ces atomes avec la partie évanescente du mode fondamental de la nanocavité. Pour cela, un facteur de qualité de l'ordre de 8.10^4 et un volume modal inférieur à 0,04 µm^3 est nécessaire.La nanocavité est l'élément clé d'une plateforme nanophotonique. Nos plateformes sont composées d'une nanocavité à cristal photonique résonant autour de 800 nm, d'un réseau-coupleur pour collecter la lumière issue d'une fibre optique et vice versa et de guides d'alimentation pour transporter la lumière du réseau-coupleur à la nanocavité. Plusieurs défis technologiques ont émergé. La nanocavité doit avoir un fort facteur de qualité et un faible volume modal, le réseau-coupleur doit collecter le maximum de lumière issue de la fibre, les guides d'alimentation doivent transporter la lumière sans perte et, enfin, un mécanisme pour coupler la lumière des guides d'alimentation dans la nanocavité devait être trouvé.J'ai simulé, designé, fabriqué et caractérisé les éléments de ma structure. J'ai obtenu des facteurs de qualité supérieurs à 10^7 en théorie, et de l'ordre de 2.10^4 expérimentalement, détenant ainsi le record pour les cavités en GaInP autour de la longueur d'onde de 800 nm pavant la voie à la réalisation des expériences de couplage fort. / Reaching the strong coupling between nanocavities and atomic systems is a key element for Quantum Information. During my PhD, I designed and fabricated photonic crystal nanocavities in Gallium Indium Phosphide (GaInP)for strong coupling around 800,nm, typical wavelength of atoms such as Rubidium (780,nm), Cesium (852 nm), the most used in this domain, and the Argon atoms (811 nm).The aim of my PhD thesis is to provide with a nanophotonic platform dedicated to strong coupling interaction. For this, nanocavities having optical resonances arounf 800 nm, with quality factors larger than 8.10^4 and mode volumes smaller than 0.04µm^3 are necessary.The nanocavity is a key element of nanophotonic plateform. Our platforms are composed of a photonic crystal nanocavityitself, a grating-coupler in order to collect light from a optic fiber and vice versa and feeding waveguides in order to transport the light from the grating-coupler to the cavity. An efficient nanophtonic platfom for a reaslitic implementation should have a nanocavity with a large Q-factor and small mode volume. The grating-coupler must efficiently collect the light from the optical fiber, and the feeding waveguides must transport the light without losses.I simulated, designed,fabricated and caracterized the elements of my structure. I obtained quality factors larger than 10^7 in theory, and about 2.10^4 experimentally, getting the record for the nanocavities in GaInP around the wavelength 800 nm, which make them close to realize experiments of strong coupling.
243

Cristaux photoniques en diamant pour la réalisation de bio-capteurs innovants / Diamond photonic crystals for new bio-sensors

Borta, Petru 09 January 2019 (has links)
Au cours des dernières années, la recherche dans le domaine des bio-capteurs optiques sans marquage a connu une croissance rapide du fait de la nécessité de développer des méthodes toujours plus performantes pour la détection et la mesure de faibles concentrations de molécules spécifiques dans divers domaines. Parmi les différentes méthodes optiques existantes, les cristaux photoniques (CP) offrent une alternative prometteuse du fait de leur sensibilité. D’autre part, le diamant, utilisé comme matériau pour la réalisation de ces dispositifs offre de bonnes propriétés optiques et la possibilité de réaliser une fonctionnalisation de surface efficace facilement. Dans ce contexte, cette thèse propose un nouveau design de bio-capteur optique à cristaux photonique bi-dimensionnel en diamant, fonctionnant à des longueurs d'onde proche de 800 nm.Une géométrie originale de trous d'air circulaires organisés selon une maille carrée a été choisie pour maximiser la sensibilité du bio-capteur à des changements d'indice de réfraction en leur surface. Il a été démontré analytiquement que les modes à faible vitesse de groupe avaient une plus grande sensibilité à ces changements. Des méthodes numériques ont permis de préciser les paramètres géométriques optimaux du CP. Le design proposé est basé sur la mesure de décalage angulaire dans le spectre en réflexion d'un mode lent résonant du CP quand celui-ci est éclairé par une lumière monochromatique.Des films de diamant polycristallin de quelques centaines de nanomètres à quelques micromètres d’épaisseur ont été déposés sur différents substrats. L’ensemble des procédés technologiques nécessaires à la réalisation des CP et spécifiques aux films de diamant polycristallin ont été développés ou optimisés, comme, entre autre, un procédé de lissage obtenu par gravure plasma, un procédé de transfert de films de diamant sur un autre substrat par collage, un procédé d’amincissement des films de diamant et la fabrication des CP par lithographie électronique et gravure plasma.Les échantillons réalisés dans la salle blanche du C2N ont été mesurés optiquement et les hypothèses théoriques concernant les performances du capteur ont étés validées. Un mode avec une vitesse de groupe c/100 à une longueur d'onde de 800 nm a été mesuré et la sensibilité correspondant a cette structure a été estimée à 500 degrés par unité d'indice de réfraction (°/RIU), une valeur supérieure d’un ordre de grandeur à celles rencontrées couramment dans les capteurs à CP bidimensionnels. Ces résultats représentent un premier pas vers un biocapteur hautement sensible, comprenant une fonctionnalisation de surface du diamant pour une reconnaissance de cible spécifique. / Over the last years, the research on the label-free biosensor topic has experienced a very rapid growth because of the need to develop high-performing methods to detect and measure low concentrations of specific molecules in various fields. Among all the methods proposed, photonic crystals (PhC) structures offers a good alternative due to their sensitivity. Moreover, the use of diamond as material make the proposed device more attractive due to its optical properties, high chemical stability and efficiency of surface functionalization. In this context, this PhD thesis propose a new design of optical bio-sensor based on diamond two-dimensional photonic crystals, working at the wavelength near 800 nm.An original geometry of circular air holes arranged in squared lattice was chosen in order to maximize the sensitivity of such photonic structures to refractive index changes on their surface. It was analytically proven that modes with low group velocity are more sensitive to these variations. Numerical methods gave the necessary information to determine the optimal geometrical parameters of the PhC. The proposed design is based on measuring the shift of the angular reflectivity of a low group velocity guided mode resonance (GMR) PhC when probed with a single frequency light.Polycrystalline diamond films were grown on two different substrates, with thicknesses ranging from a few hundreds of nanometers to several micrometers. The technological processes required for the realization of PhC on polycrustalline diamond were developed or optimized, such as surface planarization by inductively coupled plasma (ICP) dry etching, diamond film transfer onto new substrate by wafer bonding process, diamond films thinning and surface patterning with PhC using Electronic Beam Lithography (EBL) and ICP methods.The samples realized in clean-room facilities were optically measured and the theoretical assumptions were validated. A GMR with a c/100 group velocity at a wavelength of 800 nm was measured and its sensitivity is estimated to be in the order of 500 degrees/ refractive index unit (°/RIU), a value that is one order of magnitude higher than the typical values encountered for sensors based on 2D PhC. These results represents a first step towards a highly sensitive bio-sensor, including a diamond surface functionalization for specific target recognition.
244

Pokročilé simulace fotonických struktur metodou FDTD / Pokročilé simulace fotonických struktur metodou FDTD

Vozda, Vojtěch January 2015 (has links)
Finite-Difference Time-Domain method (FDTD) is based on numerical solution of Maxwell's equations, nowadays widely used for simulating optical response of photonic structures. This paper provides brief introduction to the FDTD method and several important extensions which make the basic code much more versatile. In order to broaden analysis of photonic structures, transfer matrix method (TMM) is also involved. The code is firstly tested using simple model structures which optical response might be compared with different numerical or even analytical approaches. Debugged code is used to improve photonic crystals for enhanced sensitivity of biosensing devices based on refractive index changes of sensed medium. Last but not the least, properties (sensitivity and Q-factor of resonant peak) of holey waveguide are investigated in one-, two- and three-dimensional simulation. It is shown here, that even this simple structure may compete with complex photonic crystals in the field of biosensors. Powered by TCPDF (www.tcpdf.org)
245

Exact Solutions of Planar Photonic Crystal Waveguides with Infinite Claddings

Mirlohi, Soheilla 06 October 2003 (has links)
A theoretical investigation of one-dimensional planar photonic crystal waveguides is carried out. These waveguides consist of a dielectric layer sandwiched between two semiinfinite periodic dielectric structures. Using a novel approach, exact analytical solutions for guided modes in such waveguides are presented. The se rigorous solutions allow one to distinguish clearly between the index-guiding regime and guidance due to the photonic crystal effect. In the first part of this investigation, a rigorous analysis of the reflection of uniform plane waves from a semi- infinite periodic dielectric structure is undertaken. Both parallel and perpendicular polarizations for the incident plane wave are considered. Exact expressions for the reflection coefficients corresponding to two polarization cases are obtained using an impedance approach. The results for the reflection coefficient are then used to study propagation properties of guided modes in one-dimensional photonic crystal waveguides with semiinfinite periodic cladding regions. Characteristic equations, from which propagation constants of guided modes can be obtained, and solutions for electromagnetic fields of these modes are derived. Solutions for both TE (transverse electric) and TM (transverse magnetic) modes are presented. Numerical results for the propagation constant and field distributions of several lower-order modes are presented. The solutions unique to photonic crystal waveguides are emphasized. / Master of Science
246

Etude d'une structure à cristal photonique "LOM" gravée dans un guide Ti liNbO3 dopé erbium pour l'émission de la lumière à 1.55 µm / Analysis of a Photonic-crystal structure “LOM” engraved in Ti Er LiNbO3 for 1.55 µm emission

Farha, Robert 20 September 2010 (has links)
La réalisation d’un laser en optique intégrée sur niobate de lithium dopé erbium passe par la création d’une cavité Fabry-Pérot. Cette cavité peut être obtenue de manière classique en déposant des miroirs diélectriques multicouches aux extrémités du guide d’onde. Des problèmes de fiabilité de fabrications de ces miroirs peuvent être contournés en utilisant des réseaux de Bragg gravés à la surface du guide d’onde. Une autre approche, c’est un laser DFB bien connu, dans ce cas le cœur du guide à contraste d’indice, est structuré périodiquement par des réseaux de Bragg aussi gravés à la surface. Cette thèse présente une nouvelle configuration d’un cristal photonique (CP) 2D de forme originale LOM (pour Laterally Over-Modulated) pour remplacer les réseaux de Bragg gravés à la surface de guide d’onde de titane diffusé sur un substrat de niobate de lithium dopé erbium. Ce travail de thèse s'inscrit dans ce mouvement. Son but est la conception, la fabrication et la caractérisation de LOM, destinées à réaliser un laser émettant à λ = 1,55µm répondant aux exigences de l'intégration photonique. La structure LOM proposée vise en même temps : - Le renforcement de l’émission spontanée par effet Purcell dans un milieu amplificateur où le couplage, de la sur-modulation de l’indice optique CP1D (effet Bragg) et CP2D (BIP), replie les relations de dispersion et crée de fait des régions de faible vitesse de groupe. - Le remplacement de la configuration Fabry-Pérot nécessitant un dépôt de couche diélectrique par une structure DFB réalisable en une seule étape de fabrication, d’où le choix de la technologie FIB « Focused Ion Beam ». L’optimisation de LOM occupe une partie du travail. Des simulations numériques ont été menées en deux dimensions par un logiciel « RSoft », utilisant les techniques des ondes planes et FDTD, pour obtenir un meilleur rendement de transmission possible autour de 1.55µm. En accord avec les simulations, nous présentons la réalisation et la caractérisation de LOM dans un guide d’onde Er:Ti:LiNbO3 de coupe X propagation Z pompé à 980nm par une diode laser continue. Un gain d’amplification de 9 dB a été obtenu pour un LOM de 780 trous d’air de diamètre 290nm et de période 540nm constituant une surface de (22µm X 9µm). L’étape suivante consiste à améliorer le LOM pour arriver à créer un laser intégré. / Achieving an erbium doped lithium niobate integrated optical laser needs to create a classic Fabry-Perot cavity or a distributed feedback structure (DFB). The Fabry-Perot cavity can be obtained by a multilayer dielectric mirrors at the ends of the waveguide. In the DFB Structure the waveguide is structured periodically by a surface Bragg gratings. This thesis presents a new structure of a 2D photonic crystals (PC) form called LOM (Laterally Over- Modulated) to replace Bragg gratings. The objective of this thesis is the design, manufacture and characterisation of the LOM structure, intended to achieve a LiNbO3 integrated laser emitting at 1.55μm. The proposed LOM structure aims at the same time: - To enhance the spontaneous emission by Purcell effect in Er:LiNbO3 area where LOM structure allows fold dispersion relations and create regions of low group velocity. - To replace the Fabry-Pérot structure by a LOM requiring only one-step growth, where the choice of FIB "Focused Ion Beam" technology. Optimization of the LOM structure occupies part of the work. Numerical calculations were conducted by "RSoft" software, using plan-waves and FDTD techniques, for maximum transmission around 1.55μm. Finally, we present the achievement and the characterisation of our LOM structure in a x-cut and z-propagating Ti:Er:LiNbO3 waveguide using 980nm pump. A 9 dB gain was obtained for a LOM sample (22 μmX9 μm) formed by 780 air holes of diameter D=290 nm and period a=540 nm. The next step is to improve the LOM structure to create an integrated laser.
247

Aspects of Photovoltaic Systems: Study and Simulation of Silicon Phthalocyanine Bulk Heterojunction Solar Cells and Monochromatic Photonic Power Converters

Kaller, Kayden 03 September 2021 (has links)
This thesis discusses two different photovoltaic systems, organic solar cells, and photonic power converters. The open-source software package Solcore was used to simulate and analyze optoelectronic properties of both systems. It is widely accepted that the transition from a fossil-fuel driven economy is necessary in the coming future. Organic solar cells are an alternative energy generation method with potential for fast energetic and economic payback periods. Bulk heterojunction organic solar cells are a common design, as they have particularly low manufacturing costs due to a simple device architecture. In this work, two bulk heterojunction blends are experimentally assessed using the acceptor molecule silicon phthalocyanine (bis(tri-n-butyl silyl oxide) silicon phthalocyanine ((3BS)2-SiPc) as a potential low-cost non-fullerene alternative to the typical acceptor [6,6]-phenyl-C61-butyric acid methyl ester (PC₆₁BM). These acceptors are compared within blends with the typical donor compound poly(3-hexylthiophene) (P3HT), and also poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo [1,2-b:4,5-b’]dithiophene))-alt-(5,5-(1′,3′-di-2- thienyl-5′,7′-bis(2-ethylhexyl)benzo[1′,2′-c:4′,5′-c’]dithiophene-4,8-dione)] (PBDB-T). Device performance was assessed under standard conditions, increased angles of incidence, and reduced light intensities. Devices with the P3HT:(3BS)2-SiPc blend achieved a power conversion efficiency (PCE) of 3.6%, which outperformed P3HT:PC₆₁BM devices with a PCE of 3.0% due to a higher open-circuit voltage (VOC) of 0.76 V as opposed to 0.53 V. The PBDB-T:(3BS)2-SiPc achieved a high VOC of 1.09 V, but had a lower PCE of 3.4% in relation to the PBDB-T:PC₆₁BM device with a PCE of 6.4% and a VOC of 0.78 V. Photonic power converters are devices in optical networks that allow for optical power transmission rather than the conventional method of electrical power transmission. This provides benefits such as electrical isolation and resistance to electromagnetic interference, along with the ability to propagate along the same cable as data. These power converters are used to convert optical power to electrical power, and operate similarly to a solar cell with a narrow bandwidth. Multijunction designs are often used for increased operating voltage and efficiency. In such designs employing a vertical architecture, the bottom-most junction has the largest thickness along with the lowest efficiency due to increased recombination losses. To improve this lower efficiency, light trapping techniques can be employed to decrease the junction thickness while retaining the optical thickness. In this work, a current-matched 5- junction GaAs photonic power converter was simulated with both metallic and distributed Bragg reflectors at the rear of the device. These reflectors allowed for the thinning of the bottommost junction, which resulted in an increase in efficiency and overall power output of the power converter.
248

Three-dimensional Coupled-wave Analysis of External Reflection in Photonic Crystal Lasers / フォトニック結晶レーザにおける外部反射の三次元結合波理論による解析

John, Gelleta 23 January 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第20090号 / 工博第4257号 / 新制||工||1659(附属図書館) / 33206 / 京都大学大学院工学研究科電子工学専攻 / (主査)教授 野田 進, 教授 藤田 静雄, 教授 川上 養一 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
249

Theoretical studies of microcavities and photonic crystals for lasing and waveguiding applications

Rahachou, Aliaksandr January 2006 (has links)
This Licentiate presents the main results of theoretical study of light propagation in photonic structures, namely lasing disk microcavities and photonic crystals. In the first two papers (Paper I and Paper II) we present the developed novel scattering matrix technique dedicated to calculation of resonant states in 2D disk microcavities with the imperfect surface or/and inhomogeneous refractive index. The results demonstrate that the imperfect surface of a cavity has the strongest impact on the quality factor of lasing modes. The generalization of the scattering-matrix technique to the quantum-mecha- nical case has been made in Paper III. That generalization has allowed us to treat a realistic potential of quantum-corrals (which can be considered as nanoscale analogues of optical cavities) and to obtain a good agreement with experimental observations. Papers IV and V address the novel effective Green's function technique for studying propagation of light in photonic crystals. Using this technique we have analyzed characteristics of surface modes and proposed several novel surface-state-based devices for lasing/sensing, waveguiding and light feeding applications. / <p>Report code: LIU-TEK-LIC 2006:5</p>
250

Terahertz Time-Domain Spectroscopy of Low-Dimensional Materials and Photonic Structures

Xia, Chen 12 March 2013 (has links)
No description available.

Page generated in 0.0507 seconds