Spelling suggestions: "subject:"photonic entegrated circuit"" "subject:"photonic entegrated dircuit""
1 |
Photonic Integrated Circuit Architecture for Radio-over-Fibre ApplicationsHasan, Mehedi January 2015 (has links)
The aim of the research presented in this thesis is to develop photonic integrated circuit (PIC) for Radio-over-Fiber (RoF) application. As such, at the beginning of the thesis, a dual-function photonic integrated circuit for microwave photonic applications is proposed. The photonic circuit is arranged to have two separate output ports, and depending upon the RF input signal strength, it provides either tunable millimeter wave carriers by frequency octo-tupling of the RF signal or frequency up-conversion of a microwave signal from the electrical to the optical domain. The circuit exploits the intrinsic relative phases between the ports of multi-mode interference couplers (MMI) to provide all the static optical phases needed, hence drift free. In the middle of thesis, a generalized architecture having N parallel phase modulators driven electrically with a progressive 2π⁄N phase shift is analyzed. The proposed design is justified by computer simulation for N=8 architecture with properly determined optical phase shifts to generate frequency multiplication of an electrical signal. The front- and back-end of the circuit comprises 4×4 MMI couplers enclosing an array of four pairs of phase modulators and 2×2 MMI couplers. The proposed design for frequency multiplication requires no optical or electrical filters; the operation is not limited to carefully adjusted modulation indexes. Later on, a generalized approach for achieving frequency multiplication using two cascades MZM is presented. The proposed design consists of a Mach-Zehnder interferometer with each arm containing a pair of Mach-Zehnder modulators (MZM) in series as a means of optoelectronic frequency multiplication (octo-tupling and quattourviginti-tupling). The circuit requires no electrical or optical filters. There is no requirement to carefully adjust the modulation index to achieve correct operation of the octo-tupler. A comparison is made with an alternative functionally equivalent single-stage parallel MZM circuit discussed herein the thesis. Finally, the thesis describes the generation of the same magnitude but opposite sign high order single optical side band from its output ports by using a RF source. A single stage parallel Mach-Zehnder Modulator (MZM) and a two-stage series parallel MZM architecture is described and their relative merits and demerits discussed. As an illustration of a prospective application it is shown how the circuit may be used to transport radio signals over fibre for wireless access; generating remotely a mm-wave carrier modulated by digital IQ data. A detail calculation of symbol error rate is presented to characterise the system performance. A mathematical analysis is provided to describe the principle of operation for all the proposed design and validated by commercially available industrial standard simulation tool.
|
2 |
III-nitride Photonic Integrated Circuit: Multi-section GaN Laser Diodes for Smart Lighting and Visible Light CommunicationShen, Chao 04 1900 (has links)
The past decade witnessed the rapid development of III-nitride light-emitting diodes (LEDs) and laser diodes (LDs), for smart lighting, visible-light communication (VLC), optical storage, and internet-of-things. Recent studies suggested that the GaN-based LDs, which is free from efficiency droop, outperform LEDs as a viable high-power light source. Conventionally, the InGaN-based LDs are grown on polar, c-plane GaN substrates. However, a relatively low differential gain limited the device performance due to a significant polarization field in the active region. Therefore, the LDs grown on nonpolar m-plane and semipolar (2021)-plane GaN substrates are posed to deliver high-efficiency owing to the entirely or partially eliminated polarization field. To date, the smart lighting and VLC functionalities have been demonstrated based on discrete devices, such as LDs, transverse-transmission modulators, and waveguide photodetectors. The integration of III-nitride photonic components, including the light emitter, modulator, absorber, amplifier, and photodetector, towards the realization of III-nitride photonic integrated circuit (PIC) offers the advantages of small-footprint, high-speed, and low power consumption, which has yet to be investigated. This dissertation presents the design, fabrication, and characterization of the multi-section InGaN laser diodes with integrated functionalities on semipolar (2021)-plane GaN substrates for enabling such photonic integration. The blue-emitting integrated waveguide modulator-laser diode (IWM-LD) exhibits a high modulation efficiency of 2.68 dB/V. A large extinction ratio of 11.3 dB is measured in the violet-emitting IWM-LD. Utilizing an integrated absorber, a high optical power (250mW), droop-free, speckle-free, and large modulation bandwidth (560MHz) blue-emitting superluminescent diode is reported. An integrated short-wavelength semiconductor optical amplifier with the laser diode at ~404 nm is demonstrated with a large gain of 5.32 dB at 6 V. A high-performance waveguide photodetector integrated LD at 405 nm sharing the single active region is presented, showing a significant large modulation bandwidth of 230 MHz. Thus these seamlessly integrated elements enable photonic IC at the visible wavelength for many important applications, such as smart lighting and display, optical communication, switching, clocking, and interconnect. The findings are therefore significant in developing an energy-saving platform technology that powers up human activities in a safe, health- and environmental-friendly manner.
|
3 |
Studies on Synthesis Methods for Efficient Optical Logic Circuits / 高性能な光論理回路の合成手法に関する研究Matsuo, Ryosuke 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(情報学) / 甲第24748号 / 情博第836号 / 新制||情||140(附属図書館) / 京都大学大学院情報学研究科通信情報システム専攻 / (主査)教授 湊 真一, 教授 橋本 昌宜, 教授 岡部 寿男 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
|
4 |
Electro-optical And All-optical Switching In Multimode Interference Waveguides Incorporating Semiconductor NanostructuresBickel, Nathan 01 January 2010 (has links)
The application of epitaxially grown, III-V semiconductor-based nanostructures to the development of electro-optical and all-optical switches is investigated through the fabrication and testing of integrated photonic devices designed using multimode interference (MMI) waveguides. The properties and limitations of the materials are explored with respect to the operation of those devices through electrical carrier injection and optical pumping. MMI waveguide geometry was employed as it offered advantages such as a very compact device footprint, low polarization sensitivity, large bandwidth and relaxed fabrication tolerances when compared with conventional single-mode waveguide formats. The first portion of this dissertation focuses on the characterization of the materials and material processing techniques for the monolithic integration of In0.15Ga0.85As/GaAs self-assembled quantum dots (SAQD) and InGaAsP/InGaAsP multiple quantum wells (MQW). Supplemental methods for post-growth bandgap tuning and waveguide formation were developed, including a plasma treatment process which is demonstrated to reliably inhibit thermally induced interdiffusion of Ga and In atoms in In0.15Ga0.85As/GaAs quantum dots. The process is comparable to the existing approach of capping the SAQD wafer with TiO2, while being simpler to implement along-side companion techniques such as impurity free vacancy disordering. Study of plasma-surface interactions in both wafer structures suggests that the effect may be dependent on the composition of the contact layer. The second portion of this work deals with the design, fabrication, and the testing of MMI switches which are used to investigate the limits of electrical current control when employing SAQD as the active core material. A variable power splitter based on a 3-dB MMI coupler is used to analyze the effects of sub-microsecond electrical current pulses in relation to carrier and thermal nonlinearities. Electrical current controlled switching of the variable power splitter and a tunable 2 x 2 MMI coupler is also demonstrated. The third part of this dissertation explores the response of In0.15Ga0.85As/GaAs SAQD waveguide structures to photogenerated carriers. Also presented is a simple, but effective, design modification to the 2 x 2 MMI cross-coupler switch that allows control over the carrier distribution within the MMI waveguide. This technique is combined with selective-area bandgap tuning to demonstrate a compact, working, all-optical MMI based switch.
|
5 |
Wavelength Conversion in Domain-disordered Quasi-phase Matching Superlattice WaveguidesWagner, Sean 31 August 2011 (has links)
This thesis examines second-order optical nonlinear wave mixing processes in domain-disordered quasi-phase matching waveguides and evaluates their potential use in compact, monolithically integrated wavelength conversion devices. The devices are based on a GaAs/AlGaAs superlattice-core waveguide structure with an improved design over previous generations. Quantum-well intermixing by ion-implantation is used to create the quasi-phase matching gratings in which the nonlinear susceptibility is periodically suppressed.
Photoluminescence experiments showed a large band gap energy blue shift around 70 nm after intermixing. Measured two-photon absorption coefficients showed a significant polarization dependence and suppression of up to 80% after intermixing. Similar polarization dependencies and suppression were observed in three-photon absorption and nonlinear refraction. Advanced modeling of second-harmonic generation showed reductions of over 50% in efficiency due to linear losses alone. Self-phase modulation was found to be the dominant parasitic nonlinear effect on the conversion efficiency, with reductions of over 60%. Simulations of group velocity mismatch showed modest reductions in efficiency of less than 10%.
Experiments on second-harmonic generation showed improvements in efficiency over previous generations due to low linear loss and improved intermixing. The improvements permitted demonstration of continuous wave second-harmonic generation for the first time in such structures with output power exceeding 1 µW. Also, Type-II phase matching was demonstrated for the first time. Saturation was observed as the power was increased, which, as predicted, was the result of self-phase modulation when using 2 ps pulses. By using 20 ps pulses instead, saturation effects were avoided. Thermo-optically induced bistability was observed in continuous wave experiments.
Difference frequency generation was demonstrated with wavelengths from the optical C-band being converted to the L- and U-bands with continuous waves. Conversion for Type-I phase matching was demonstrated over 20 nm with signal and idler wavelengths being separated by over 100 nm. Type-II phase matched conversion was also observed. Using the experimental data for analysis, self-pumped conversion devices were found to require external amplification to reach practical output powers. Threshold pump powers for optical parametric oscillators were calculated to be impractically large. Proposed improvements to the device design are predicted to allow more practical operation of integrated conversion devices based on quasi-phase matching superlattice waveguides.
|
6 |
Wavelength Conversion in Domain-disordered Quasi-phase Matching Superlattice WaveguidesWagner, Sean 31 August 2011 (has links)
This thesis examines second-order optical nonlinear wave mixing processes in domain-disordered quasi-phase matching waveguides and evaluates their potential use in compact, monolithically integrated wavelength conversion devices. The devices are based on a GaAs/AlGaAs superlattice-core waveguide structure with an improved design over previous generations. Quantum-well intermixing by ion-implantation is used to create the quasi-phase matching gratings in which the nonlinear susceptibility is periodically suppressed.
Photoluminescence experiments showed a large band gap energy blue shift around 70 nm after intermixing. Measured two-photon absorption coefficients showed a significant polarization dependence and suppression of up to 80% after intermixing. Similar polarization dependencies and suppression were observed in three-photon absorption and nonlinear refraction. Advanced modeling of second-harmonic generation showed reductions of over 50% in efficiency due to linear losses alone. Self-phase modulation was found to be the dominant parasitic nonlinear effect on the conversion efficiency, with reductions of over 60%. Simulations of group velocity mismatch showed modest reductions in efficiency of less than 10%.
Experiments on second-harmonic generation showed improvements in efficiency over previous generations due to low linear loss and improved intermixing. The improvements permitted demonstration of continuous wave second-harmonic generation for the first time in such structures with output power exceeding 1 µW. Also, Type-II phase matching was demonstrated for the first time. Saturation was observed as the power was increased, which, as predicted, was the result of self-phase modulation when using 2 ps pulses. By using 20 ps pulses instead, saturation effects were avoided. Thermo-optically induced bistability was observed in continuous wave experiments.
Difference frequency generation was demonstrated with wavelengths from the optical C-band being converted to the L- and U-bands with continuous waves. Conversion for Type-I phase matching was demonstrated over 20 nm with signal and idler wavelengths being separated by over 100 nm. Type-II phase matched conversion was also observed. Using the experimental data for analysis, self-pumped conversion devices were found to require external amplification to reach practical output powers. Threshold pump powers for optical parametric oscillators were calculated to be impractically large. Proposed improvements to the device design are predicted to allow more practical operation of integrated conversion devices based on quasi-phase matching superlattice waveguides.
|
7 |
Conception de transmetteurs 1,3 µm par épitaxie sélective en phase vapeur aux organo-métalliques / Design of 1.3 µm transmitters by metalorganic vapor phase selective area growthBinet, Guillaume 13 December 2016 (has links)
Le développement des réseaux optiques et l’augmentation des interconnexions à courtes distances, amènent un besoin croissant en transmetteurs émettant à 1,3 µm, performants, peu énergivores et fabriqués à bas coût.Ainsi, l’intégration photonique monolithique, qui vise à juxtaposer plusieurs fonctions optiques dans un même circuit, est une solution. L’épitaxie sélective en phase vapeur aux organo-métalliques est une technique prometteuse pour cela. Elle permet, en une seule étape de croissance, de définir les structures des différents composants unitaires constituant le circuit intégré photonique. Il est nécessaire d’avoir un outil de simulation qui permet de modéliser la croissance sélective. Auparavant la modélisation proposée ne prenait en compte que des phénomènes de diffusion en phase vapeur et négligeait les phénomènes de surface. Une modélisation plus précise a été développée, fondée sur la relaxation de l’interface. En parallèle, nous avons conçu sept différentes structures actives, à base de multi-puits quantiques en matériaux AlGaInAs pour des composants DML et EML émettant à 1.3 µm. Nous avons fait des mesures de laser à contacts larges et des mesures d’absorption en photo-courant, pour sélectionner la meilleure structure.Une étude expérimentale de la croissance, à partir de microscopie électronique en transmission et de micro-diffraction aux rayons X, a permis de réaliser l’épitaxie sélective de la structure sélectionnée. Les composants fabriqués ont des performances à l’état de l’art avec une bande passante de 12,5 GHz pour un DML de 250 µm ainsi qu’un diagramme de l’œil ouvert à 32 Gbit/s avec un taux d’extinction dynamique de 10 dB, pour en EML. / The development of passive optical networks and the increase of short-reach connections make an increasing need for efficient, energy-friendly and low-cost transmitters emitting at 1.3 µm.To this end, monolithic photonic integration, which aims to embed several optical functions into the same circuit, is a solution. Selective area growth (SAG) by metal-organic vapor-phase-epitaxy (MOVPE) seems to be an attractive technique to achieve this integration. This approach allows defining, in a single epitaxial step, the structures of the different unitary photonic functions constituting the photonic integrated circuit. One issue of this technique is the growth modeling, necessary to predict the material distribution. Previously, the model was only taking into account vapor phase diffusion phenomena, neglecting surface phenomena. Consequently a more accurate approach was developed, based on interface relaxation.Simultaneously, we designed seven different active structures, all based on AlGaInAs multi-quantum wells, in order to optimize the DML and EML devices emitting at 1.3µm . We performed wide area laser and photocurrent absorption measurements to select the best trade-off design for devices fabrication.In order to perform accurate SAG of the selected structure, experimental study has been done to optimize the growth using transmission electronic microscopy and X-ray micro-diffraction. Devices have been processed and exhibit state of the art performances. A bandwidth of 12.5 GHz was demonstrated for a 250 µm long DML and 32 Gbit/s open eye diagram with a 10 dB dynamic extinction ratio has been shown, on a EML with a 100 µm long EAM.
|
8 |
<b>PHYSICS INSPIRED AI-DRIVEN PHOTONIC INVERSE DESIGN FOR HIGH-PERFORMANCE PHOTONIC DEVICES</b>Omer Yesilurt (19435210) 19 August 2024 (has links)
<p dir="ltr">This thesis presents novel methodologies to integrate AI-driven and physics-inspired methodologies into photonic inverse design, setting new benchmarks for high-performance photonic devices in different branches of photonics. By blending advanced computational techniques with the foundational principles of electromagnetism, this research tackles key challenges in optimizing device efficiency, robustness, and functionality. The aim is to propel photonic technology beyond its current capabilities, offering transformative solutions for a range of novel applications.</p><p dir="ltr">The first major contribution focuses on adjoint-based topology optimization for on-chip single-photon coupling. We developed an adjoint topology optimization scheme to design high-efficiency couplers between photonic waveguides and single-photon sources (SPSs) in hexagonal boron nitride (hBN). This algorithm addresses fabrication constraints and SPS location uncertainties, achieving a remarkable average coupling efficiency of 78%. A library of designs is generated for different positions of the hBN flake containing an SPS relative to a silicon nitride (SiN) waveguide. These designs are then analyzed using dimensionality reduction techniques to investigate the relationship between device geometry and performance, infusing the design process with deep physical intuition and insight.</p><p dir="ltr">The second key advancement is presented through a neural network-based inverse design framework specifically developed for optimizing single-material, variable-index multilayer films. This neural network-driven technique, supported by a differentiable analytical solver, enables the realistic design and fabrication of these multilayer films, achieving high performance under ideal conditions. The approach also addresses the challenge of bridging the gap between these ideal designs and practical devices, which are subject to growth-related imperfections. By incorporating simulated systematic and random errors—reflecting actual deposition challenges—into the optimization process, we demonstrate that the neural network, initially trained to produce the ideal device, can be reconfigured to create designs that compensate for systematic deposition errors. This method remains effective even when random fabrication inconsistencies are present. The results provide a practical and experimentally viable strategy for developing single-material multilayer film stacks, ensuring reliable performance across a wide range of real-world applications.</p><p dir="ltr">The final cornerstone of this research investigates the two-stage inverse design of superchiral dielectric metasurfaces. We propose a two-stage inverse design scheme for dielectric lossless metasurfaces with central superchiral hot spots. By leveraging the excitation of high-quality factor modes with low mode volumes, we achieve up to 19,000-fold enhancements of optical chirality. This method extends the local density of field enhancements for non-chiral fields into the chiral regime and significantly surpasses previous enhancements in superchiral field generation. Our results open new avenues in chiral spectroscopy and chiral quantum photonics, exemplifying the powerful synergy of AI techniques and physics-based design principles in creating highly innovative and functional photonic structures.</p><p dir="ltr">Collectively, the methodologies developed in this thesis signify a major advancement in the field of photonic inverse design. By merging AI-driven techniques with rigorous physics-based optimization frameworks, this research paves the way for the next generation of photonic devices.</p>
|
9 |
Study on electroabsorption modulators and grating couplers for optical interconnectsTang, Yongbo January 2010 (has links)
Decades of efforts have pushed the replacement of electrical interconnects by optical links to the interconnects between computers, racks and circuit boards. It may be expected that optical solutions will further be used for inter-chip and intra-chip interconnects with potential benefits in bandwidth, capacity, delay, power consumption and crosstalk. Silicon integration is emerging to be the best candidate nowadays due to not only the dominant status of silicon in microelectronics but also the great advantages brought to the photonic integrated circuits (PICs). Regarding the recent breakthroughs concerning active devices on silicon substrate, the question left is no longer the feasibility of the optical interconnects based on silicon but the competitiveness of the silicon device compared with other alternatives. This thesis focuses on the study of two key components for the optical interconnects, both especially designed and fabricated for silicon platform. One is a high speed electroabsorption modulator (EAM), realized by transferring an InP-based segmented design to the hybrid silicon evanescent platform. The purpose here is to increase the speed of the silicon PICs to over 50 Gb/s or more. The other one is a high performance grating coupler, with the purpose to improve the optical interface between the silicon PICs and the outside fiber-based communication system. An general approach based on the transmission line analysis has been developed to evaluate the modulation response of an EAM with a lumped, traveling-wave, segmented or capacitively-loaded configuration. A genetic algorithm is used to optimize its configuration. This method has been applied to the design of the EAMs on hybrid silicon evanescent platform. Based on the comparison of various electrode design, segmented configuration is adopted for the target of a bandwidth over 40 GHz with as low as possible voltage and high extinction ratio. In addition to the common periodic analysis, the grating coupler is analyzed by the antenna theory assisted with an improved volume-current method, where the directionality of a grating coupler can be obtained analytically. In order to improve the performance of the grating coupler, a direct way is to address its shortcoming by e.g. increasing the coupling efficiency. For this reason, a nonuniform grating coupler with apodized grooves has been developed with a coupling efficiency of 64%, nearly a double of a standard one. Another way is to add more functionalities to the grating coupler. To do this, a polarization beam splitter (PBS) based on a bidirectional grating coupler has been proposed and experimentally demonstrated. An extinction ratio of around -20 dB, as well as a maximum coupling efficiency of over 50% for both polarizations, is achieved by such a PBS with a Bragg reflector underneath. / QC 20100906
|
10 |
Hybrid III-V on silicon lasers for optical communications / Sources lasers hybrides III-V sur silicium pour les communications optiquesGallet, Antonin 04 April 2019 (has links)
L’intégration photonique permet de réduire la taille et la consommation d’énergie des systèmes de communication par fibre optique par rapport aux systèmes assemblés à partir de composants unitaires. Cette technologie a récemment suscité un grand intérêt avec les progrès de l’intégration sur InP et le développement de la photonique sur silicium. Cette dernière challenge la plate-forme d’intégration sur InP car des composants à hautes performances et faibles coûts peuvent être fabriqués dans des fonderies originellement développées pour la microélectronique. Les lasers sont l'une des pièces maitresses des émetteurs-récepteurs pour les communications optiques. Leur intégration sur la plateforme silicium permet de développer des émetteurs-récepteurs comprenant les fonctions critiques d’émission de lumière, de modulation et de détection sur une même puce. L’intégration de matériaux III-V par collage moléculaire sur plaque silicium permet de produire de grands volumes : plusieurs dizaines voire centaines de composants sont réalisés par wafer. Dans cette thèse, j’ai étudié théoriquement et expérimentalement les propriétés des lasers accordables basés sur des résonateurs en anneau en silicium, des lasers à rétroaction distribuée modulés directement et des lasers à haut facteur de qualité qui présentent un faible bruit de phase et d’intensité. / Photonic integration reduces the size and energy consumption of fiber optic communication systems compared to systems assembled from discrete components. This technology has recently attracted a great interest with the progress of integration on InP and the development of silicon photonics. The latter challenges the integration platform on InP as high-performance and low-cost components can be manufactured in foundries originally developed for microelectronics. Lasers are one of the main parts of transceivers for optical communications. With their integration on the silicon platform, transceivers that include the critical functions of light emission, modulation and detection on the same chip can be made. In the heterogeneous integration platform, components are manufactured in high volumes: several tens or even hundreds of components are produced per wafer. In this thesis, I studied theoretically and experimentally the properties of tunable lasers based on silicon ring resonators, directly modulated distributed feedback lasers and low noise high-quality factor lasers
|
Page generated in 0.0622 seconds