• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 791
  • 404
  • 212
  • 156
  • 98
  • 68
  • 26
  • 18
  • 14
  • 13
  • 12
  • 10
  • 8
  • 8
  • 8
  • Tagged with
  • 2110
  • 832
  • 713
  • 632
  • 404
  • 382
  • 369
  • 296
  • 274
  • 272
  • 218
  • 190
  • 186
  • 163
  • 161
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

The copper-bismuth-sulphur material system and thin film deposition of Cu3BiS3 by sputtering and evaporation for the application of photovoltaic cells

McCracken, R. O. January 2016 (has links)
The semiconducting sulphosalt Wittichenite has been identified as a possible absorber material for thin film photovoltaic devices. It has the chemical formula Cu3BiS3 and its component elements are those of low toxicity and high abundance making it a very attractive prospect for photovoltaic devices. The copper bismuth sulphur material system is not very well understood and information on it limited to a few small regions. To aid understanding of this system a pseudo-binary phase diagram along the CuS-Bi join of the Cu-Bi-S ternary phase diagram was constructed by making bulk samples of various compositions along the join and analysing them using X-ray diffraction and differential scanning calorimetry. This join was chosen because is crosses the point at which Cu3BiS3 would be expected to occur due to its stoichiometry. The CuS-Bi phase diagram shows Cu3BiS3 forms across a wide compositional range but is mixed with either bismuth metal or copper sulphides depending on composition. Films of Cu3BiS3 were made using sputtered copper and bismuth films annealed in a sulphur atmosphere and thermal co- evaporation of copper sulphide and bismuth.
232

Spectroscopy Investigation of Molecular Processes at Organic/Metal Oxide and Organic/Metal Interfaces in Organic Photovoltaic Devices

Sang, Lingzi, Sang, Lingzi January 2015 (has links)
The purpose of this Dissertation is to investigate the chemistry at interfaces between organic active materials and two electrodes, namely organic metal oxide cathode and metal anode, in organic photovoltaic (OPV) devices. Poor compatibility and energy level mismatch at organic/transparent metal oxide (TCO) interfaces is a long standing challenge which limits interfacial electron transfer efficiency. Phosphonic acid modifiers on TCO surfaces are able to improve interface compatibility and energy alignment. Chapters 3 and 4 in this Dissertation investigate the fundamental formation, quality and orientation of phosphonic acid monolayers on indium-doped zinc oxide (IZO) surfaces, a model TCO. Metal electrode deposition on organic active layer materials is a common last step of OPV device fabrication. Chapters 5-8 in this Dissertation explore possible molecular processes at organic-metal interfaces when metal deposition occurs under ultra-high vacuum conditions. Choosing octylphosphonic acid (OPA), F₁₃-octylphosphonic acid (F₁₃OPA), pentafluorophenyl phosphonic acid (F₅PPA), benzyl phosphonic acid (BnPA), and pentafluorobenzyl phosphonic acid (F₅BnPA) as a representative group of modifiers, Chapter 3 describes polarization modulation-infrared reflectance-absorbance spectroscopy (PM-IRRAS) of binding and molecular orientation on IZO substrates. Considerable variability in molecular orientation and binding type is observed with changes in PA functional group. OPA exhibits partially disordered alkyl chains, but on average, the chain axis is tilted 57° from the surface normal; F13OPA tilts 26° with mostly tridentate binding; the F₅PPA ring orients 72° from the surface normal with a mixture of bidentate and tridentate binding; the BnPA ring orients 59° from normal with a mixture of bidentate and tridentate binding, and the F₅BnPA ring orients 45° from normal with a majority of bidentate with some tridenate binding. These trends are consistent with what has been observed previously for the effects of fluorination on orientation of phosphonic acid modifiers. The results from PM-IRRAS are well correlated with recent results on similar systems from near-edge x-ray absorption fine structure (NEXAFS) and density functional theory (DFT) calculations. Overall, these results indicate that both surface binding geometry and intermolecular interactions play important roles in dictating orientation of PA modifiers on TCO surfaces. This work also establishes PM-IRRAS as a routine method for SAM orientation determination on complex oxide substrates. In addition to orientation studies the effect of PA deposition method on the formation of close-packed, high-quality monolayers is investigated in Chapter 4 for SAMs fabricated by solution deposition, microcontact printing, and spray coating. The solution deposition isotherm for perfluorinated benzylphosphonic acid (F₅BnPA) on IZO is studied using PM-IRRAS at room temperature as a model PA/TCO system. Fast surface adsorption occurs in the first minute; however, well-oriented high-quality SAMs are reached only after ~48 h, presumably through a continual process of molecular adsorption/desorption accompanied by molecular reorientation. Two other rapid, soak-free deposition techniques, microcontact printing and spray coating, are also explored. SAM quality is compared for deposition of phenyl phosphonic acid (PPA), F₁₃-octylphosphonic acid (F₁₃OPA), and perfluorinated benzyl phosphonic acid (F₅BnPA) by solution deposition, microcontact printing and spray coating using PM-IRRAS. In contrast to microcontact printing and spray coating techniques, 48-168 h solution depositions at both room temperature and 70 °C result in contamination- and surface etch-free close-packed monolayers with good reproducibility. SAMs fabricated by microcontact printing and spray coating are much less well ordered.Oligothiophenes are building blocks of the popular organic donor materials polythiophene and P3HT. In Chapters 6 and 7, interfacial reactions of the model thiophene-based oligomers, ɑ-sexithiophene (ɑ-6T) and 2, 2’:5’, 2”-terthiophene (ɑ-3T), with vapor deposited Ag, Al, Mg and Ca are investigated using surface Raman spectroscopy under ultra-high vacuum conditions. Results indicate that Al and Ca cause reduction of ɑ-6T to tetrahydrothiophene and calcium sulfite, respectively, with Al exhibiting less reactivity than Ca. Partial electron donation from the sulfur atom lone pair electrons to vacant Ag and Mg d or p orbitals is observed, inducing formation of polaron states at the interface. Inter-ring C-C bond rotation is also induced by this electron sharing betweenɑ-6T and both Ag and Mg. This unexpected evolution of ɑ-6T interfaces with low work function metals alters the interfacial energetics through the formation of “gap” states which ultimately impact device performance. Vapor deposited Ag forms nanoparticles on the surface and induces considerable surface enhanced Raman scattering (SERS) of the ɑ-3T along with a change in molecular symmetry and formation of Ag-S bonds; no other reaction chemistry is observed. Vapor deposited Al and Ca exhibit chemical reaction withɑ-3T spectrum initiated by metal-to-3T electron sharing. For Al, the resulting product is predominantly amorphous carbon (a-C) through initial radical formation and subsequent decomposition reactions. For Ca, the spectral evidence suggests two pathways: one leading to ɑ-3T polymerization and the other resulting in thiophene ring opening, both initiated by radical formation through Ca-to-ɑ-3T electron transfer. In Chapter 8, metal penetration depth into ɑ-3T and ɑ-6T films is investigated and compared between Ag, Al, Mg and Ca using Raman and X-ray photoelectron spectroscopies. Mg exhibits the greatest penetration with no observable surface metallization on 50 ML (15 nm) OT surfaces. Ag shows moderate penetration and metallization ability with no reaction chemistry when in contact with ɑ-6T. Al and Ca exhibit the least penetration and greatest metallization abilities, possibly due to reaction chemistry occurring between Al (or Ca) and ɑ-6T. Al and Ca both penetrate up to 10-14 nm intoɑ-6T layers. The penetration process for Ca consists of two distinct phases. Ca tends to be more evenly distributed throughout the entire ɑ-6T film and reduce the native ɑ-6T until the composition of the top 5-7 nm of the ɑ-6T film becomes constant; beyond this point, further Ca deposition penetrates and completely reduces ɑ-6T into CaS throughout the entire 10-14 nm thickness. Al atoms are more concentrated within the top 5-7 nm of the film and gradually penetrate deeper into the film. These results reveal significant but varying depths of the impact of deposited metals on OT thin films during physical vapor deposition; these results further reinforce the critical role of interfacial chemistry on organic electronic device performance.
233

On the characterisation of diffused light and optical elements in high concentrator photovoltaic modules

Schultz, Ross Dane January 2015 (has links)
High Concentrated Photovoltaics (H-CPV) promise a more efficient, higher power output than traditional photovoltaic modules. This is achieved by concentrating sunlight onto a small triple junction (CTJ) InGaP/InGaAs/Ge cell (ranging from 3.14 mm2 to 1 cm2) by using precision optical systems. These systems utilise non-imaging optics to concentrate and distribute the incident solar flux uniformly onto the CTJ device receiver to achieve maximum performance and power output from an H-CPV module. However, the performance of the device can be reduced due to the partial or complete absorption of a range of wavelengths present in the solar spectrum by the optical materials that are used for concentration. An investigation to determine the current density topographies of each subcell in a CTJ cell by multiple raster scans of an optical fibre receiver of a spectrometer in the plane of the aperture of the secondary’s optical element was conducted. Results showed that the physical properties of the optical elements’ material absorbed different amounts of the spectral content with respect to the subcell photosensitive wavelength regions. The facet properties of the primary optical Fresnel lens showed that the more rounded the Fresnel facets were, the lower the concentration of sunlight incident onto the CTJ cell. The increase in facet numbers showed an increase in scattering of the incident sunlight and chromatic aberrations. Chromatic aberration created by the refractive optics showed a variation in the amount of concentration on each individual subcell as well as the difference in intensity profiles across for the different subcells. Based on these results and the development of new multi-junction devices by industry, the performance of a four and six-junction device with the optical materials was investigated by simulations. The simulations showed that the careful integration of an additional subcell in a multi-junction device could rectify current mismatch between the subcells in the device. Based on the simulations, the best performing multi-junction cell was identified as the four-junction device that showed a cell and module efficiency under operation of 42.5 % and 35.5 %, respectively. Additionally, based on the performance results observed from the H-CPV module, the development of an HCPV module that would attempt to harness the incident tracked diffuse sunlight available to a concentrator photovoltaic (CPV) module for additional energy yield was undertaken. The part of the study comprised of measurements of the solar source, design of a prototype Hybrid High Concentrator Photovoltaic (HH-CPV) module. Results showed that power generation from the H-CPV system was highly dependent on the DNI levels and fluctuates greatly with variation in the DNI. The irradiance levels within the diffuse regions of the H-CPV module showed that the baseplate and vertical sides had an average irradiance range of 140-450 and 50-225 W.m-2, respectively. Irradiance topographic raster scans revealed that the baseplate and vertical sides had a relatively uniform intensity distribution and was identified as favourable sites for diffuse cell population. Simulations of various PV technologies showed the most suitable technology for the placement within the cavity of the HH-CPV module. The developed HH-CPV module was finalized with the utilization of CIS modules to harness the diffuse irradiance. During a 3 month power monitoring of the HH-CPV system, it was determined that the major power generation for the HH-CPV module come from the CPV component, while the CIS modules showed a minor power contribution. The total energy yield for the monitoring period was 45.99, 3.89 and 1.76 kW.h for the CPV, four-vertical sides and baseplate components, respectively. The increase in energy yield of the HH-CPV module when compared to the standard H-CPV module was determined to be 12.35 % for the monitoring period. The incorporation of the CIS modules into the H-CPV module to create the HH-CPV module did increase the energy yield of the module during high DNI conditions and did offset the almost zero power generation during low DNI conditions.
234

On the characterization of photovoltaic devices for concentrator purposes

Vorster, Frederick Jacobus January 2007 (has links)
This study originated from an evaluation of the performance of a commercially available high concentration point focus concentrator PV system. The effect of module design flaws was studied by using current-voltage (I-V) curves obtained from each module in the array. The position of reverse bias steps revealed the severity of mismatch in a string of series-connected cells. By understanding the effects of the various types of mismatch, power losses and damage to the solar cells resulting from hot spot formation can be minimized and several recommendations for improving the basic performance of similar systems were made. Concern over the extent and type of defect failure of the concentrator photovoltaic (CPV) cells prompted an investigation into the use of a light beam induced current (LBIC) technique to investigate the spatial distribution of defects. An overview of current and developing LBIC techniques revealed that the original standard LBIC techniques have found widespread application, and that far-reaching and important developments of the technique have taken place over the years. These developments are driven by natural progression as well as the availability of newly developed advanced measurement equipment. Several techniques such as Lock-in hermography and the use of infrared cameras have developed as complementary techniques to advanced LBIC techniques. As an accurate contactless evaluation tool that is able to image spatially distributed defects in cell material, the basis of this method seemed promising for the evaluation of concentrator cells.
235

A photovoltaic-powered pumping system

Liu, Guang January 1989 (has links)
This thesis studies the optimal design for a photovoltaic-powered medium-head (30 meters) water pumping system, with the emphasis on improving the efficiency and reducing the maintenance requirements of the electrical subsystem. The reduction of maintenance requirements is realized by replacing the conventional brush-type permanent magnet dc motor with a brushless dc (BLDC) motor. Different BLDC motor control techniques such as position-sensorless operation, sinusoidal and trapezoidal excitations are investigated. The improvement in efficiency is achieved by maximizing the output power from the photovoltaic array and by minimizing the losses in various parts of the electrical sub-system. A microprocessor-based double-loop maximum power tracking scheme is developed for maximization of the photovoltaic array output power. Over 99% utilization factor is achieved for a typical clear day regardless of the season of the year. The system losses are minimized mainly by performing loss analysis and selecting most suitable switching topologies and switching components. Experimental results show that the combined converter-motor efficiency is comparable to those of high-efficiency brush-type dc motor systems. / Applied Science, Faculty of / Electrical and Computer Engineering, Department of / Graduate
236

Optimisation of photovoltaic-powered electrolysis for hydrogen production for a remote area in Libya

Elamari, Matouk M. Mh January 2011 (has links)
Hydrogen is a potential future energy storage medium to supplement a variety of renewable energy sources. It can be regarded as an environmentally-friendly fuel, especially when it is extracted from water using electricity obtained from solar panels or wind turbines. The focus in this thesis is on solar energy, and the theoretical background (i.e., PSCAD computer simulation) and experimental work related to a water-splitting, hydrogen-production system are presented. The hydrogen production system was powered by a photovoltaic (PV) array using a proton exchange membrane (PEM) electrolyser. The PV array and PEM electrolyser display an inherently non-linear current-voltage relationship that requires optimal matching of maximum operating power. Optimal matching between the PV system and the electrolyser is essential to maximise the transfer of electrical energy and the rate of hydrogen production. A DC/DC converter is used for power matching by shifting the PEM electrolyser I-V curve as closely as possible toward the maximum power the PV can deliver. By taking advantage of the I-V characteristics of the electrolyser (i.e., the DC/DC converter output voltage is essentially constant whereas the current increases dramatically), we demonstrated experimentally and in simulations that the hydrogen production of the PV-electrolyser system can be optimised by adjusting the duty cycle generated by the pulse-width modulation (PWM) circuit. The strategy used was to fix the duty cycle at the ratio of the PV maximum power voltage to the electrolyser operating voltage. A stand-alone PV energy system, using hydrogen as the storage medium, was designed. The system would be suitable for providing power for a family's house located in a remote area in the Libyan Sahara.
237

Transmission Electron Microscopy Characterization of Photovoltaic Semiconductor Materials

January 2020 (has links)
abstract: The research of this dissertation has primarily involved using transmission electron microscopy (TEM) techniques to study several semiconductor materials considered promising for future photovoltaic device applications. Layers of gallium phosphide (GaP) grown on silicon (Si) substrates were characterized by TEM and aberration-corrected scanning transmission electron microscopy (AC-STEM). High defect densities were observed for samples with GaP layer thicknesses 250nm and above. Anti-phase boundaries (APBs) within the GaP layers were observed at interfaces with the Si surfaces which were neither atomically flat nor abrupt, contradicting conventional understanding of APB formation. Microcrystalline-Si (μc-Si) layers grown on crystalline-Si (c-Si) substrates were investigated. Without nanoparticle seeding, an undesired amorphous-Si (a-Si) layer grew below the μc-Si layer. With seeding, the undesired a-Si layer grew above the μc-Si layer, but μc-Si growth proceeded immediately at the c-Si surface. Ellipsometry measurements of percent crystallinity did not match TEM images, but qualitative agreement was found between TEM results and Ultraviolet Raman spectroscopy. TEM and Xray spectroscopy were used to study metal-induced crystallization and layer exchange for aluminum/ germanium (Al/Ge). Only two samples definitively exhibited both Ge crystallization and layer exchange, and neither process was complete in either sample. The results were finally considered as inconclusive since no reliable path towards layer exchange and crystallization was established. Plan-view TEM images of indium arsenide (InAs) quantum dots with gallium arsenide antimonide (GaAsSb) spacer layers revealed the termination of some threading dislocations in a sample with spacer-layer thicknesses of 2nm, while a sample with 15-nm-thick spacer layers showed a dense, cross-hatched pattern. Cross-sectional TEM images of samples with 5-nm and 10-nm spacer-layer thicknesses showed less layer undulation in the latter sample. These observations supported photoluminescence (PL) and Xray diffraction (XRD) results, which indicated that GaAsSb spacer layers with 10-nm thickness yielded the highest quality material for photovoltaic device applications. a-Si/c-Si samples treated by hydrogen plasma were investigated using high-resolution TEM. No obvious structural differences were observed that would account for the large differences measured in minority carrier lifetimes. This key result suggested that other factors such as point defects, hydrogen content, or interface charge must be affecting the lifetimes. / Dissertation/Thesis / Doctoral Dissertation Physics 2020
238

Ekonomická stránka a rentabilita fotovoltaické elektrárny / Economics and viability of photovoltaic power station

Mrázek, Dalibor January 2011 (has links)
At the beginning of the submitted work, I dealt with the study of various types of photovoltaic panels, their diverse use, effectiveness, advantages of each type and description of climate in the Czech Republic. Depending on the number of sunny days and no claudy days, I was looking for the best areas photovoltaic power. On the basis of cooperation with the firm and Energ-servis and using their test center, I compare different types of panels, their performance in relation with the cost and method of purchase. From these data, six diverse installation, I tried to determine the best type of panel that is best for the South Moravian region in the cost / return on investment.
239

Fotovoltaické články pro napájení nízkoodběrových elektronických zařízení / Photovoltaic celss for supplying low-demand electronic devices

Slivka, Ján January 2013 (has links)
The aim of master’s thesis was to develop a method for long-term measuring the influence of temperature on photovoltaic cells and lithium-polymer batteries and to design such measuring system. System was assembled on universal printed circuit board. It consisted of circuits for measuring temperature, illuminance and charging circuit, which charged battery with capacity 110 mAh. The PV cell BSK-SP9261 was used as source. Voltages was recorded by data acquisition device NI-USB 6009 and loged in program developed in LabVIEW 2012 enviroment. Afterwards, temperature, illuminance, voltage on PV cell and internal resistance of battery were computed.
240

Thin Film Group II-VI Solar Cells Based on Band-Offsets

Walton, James Keith 01 January 2010 (has links)
The amount of traditional energy sources are finite and the ecological impact of continuing to produce energy using fossil fuels will only exacerbate the carbon footprint. It is for these reasons that photovoltaic modules are becoming a larger and more necessary part the world's electricity production paradigm. Photovoltaic (PV) semiconductor modules are grouped into three categories. 'First generation' monocrystalline and polycrystalline silicon modules that consist of pn junctions created via the addition of impurities known as dopants. Almost 85% of solar cells produced at this time are `first generation' and it is the high production costs of silicon PV modules that motivated the search for new methods and materials to use as PV cells. 'Second generation' PV modules consist of semiconductor thin films. The 'second generation' PV modules in production at this time are copper indium gallium diselenide (CIGS), copper indium gallium (CIG), amorphous silicon (a-Si), and cadmium telluride (CdTe). The 'third generation' PV modules consist of dye-sensitized and organic materials. Thin films use less material, have less stringent production parameters and less waste, making thin films cost effective. In this investigation, solar cells were prepared using un-doped Group II-VI semiconductor thin films that exploit differences in bandoffsets to form effective p-n heterojunctions as a viable low cost alternative to doping. The thin films were deposited by thermal evaporation upon glass substrates coated with indium tin oxide (ITO). A layer of aluminum formed the back contact. Various configurations of the solar cells were produced including: ITO/CdS/CdSe/Al, ITO/ZnTe/CdSe/Al, ITO/CdTe/CdSe/Al, ITO/ZnTe/CdTe/CdS/Al. The solar cells produced have been characterized to determine thin film internal resistances, quantum and 'wall-plug' efficiencies, as well as I-V and spectral response. The open circuit voltage, short circuit current density, fill factor, and efficiency of our best devices were 0.26 V, 4.6 mA, 27.5 and 0.4% respectively. Additional device optimization should be possible and should improve these results. Solar cell design based on band-offset is an effective method for predetermining likely PV structures, while future investigation using Group II-VI semiconductor nanowires and nanorods and employing epitaxial films are likely to enhance the efficiency.

Page generated in 0.0331 seconds