• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 151
  • 59
  • 50
  • 20
  • 8
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 363
  • 363
  • 214
  • 135
  • 122
  • 111
  • 79
  • 59
  • 55
  • 53
  • 52
  • 50
  • 50
  • 47
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Design and operation of a stand-alone solar pathway for public park lighting

Abaid, Abdulrauf Ahmed Asway January 2017 (has links)
Thesis (MTech (Electrical Engineering))--Cape Peninsula University of Technology, 2017. / The development of solar roads to convert insolation on vast stretches of land to electrical energy, otherwise dedicated solely for transportation, is in its nascent stage. A great potential is seen for PV application with the maturing of solar road technology. Apart from increasing the versatility by smart utilization of land resources, widening the cover of renewable energy generation will lead to a sustainable, secure energy future. A stand-alone solar pathway for public park lighting or area lighting system, completely independent of the power grid, was designed and operated. Public lighting for 65 m stretch of walkway located next to the Electrical, Electronic and Computer Engineering Department building, was chosen as a case study in this study. The case study presented simplified method for sizing, performance evaluation and simulation of a stand-alone solar pathway to power public lighting on the Bellville Campus of the Cape Peninsula University of Technology. Depending on the requirements of the electrical, the quantity and quality of lighting, as well as the required duration of the lighting were calculated. Battery storage capacity, based on the desired autonomy period, and maximum and average daily depth of discharge, were sized. PV array size, based on the type and specifications of PV module, the time of year with the highest average daily lighting load and minimum solar radiation, were selected and measured. Control strategies for battery protection and lighting control conditions were determined, and the control set points were specified. The operating efficiency of solar pathway was evaluated and showed excellent performance compared to the expected with annual average value of the monthly performance ratio and system efficiency. A stand-alone solar pathway system was programmed using MATLAB, in order to size a PV system to the supply public lighting for the walkway. The computer program used, can be applied to any site with different weather conditions.
72

Statistical viability assessment of a photovoltaic system in the presence of data uncertainty

Clohessy, Chantelle May January 2017 (has links)
This thesis investigates statistical techniques that can be used to improve estimates and methods in feasibility assessments of photovoltaic (PV) systems. The use of these techniques are illustrated for a case study of a 1MW PV system proposed for the Nelson Mandela Metropolitan University South Campus in Port Elizabeth, South Africa. The results from the study provide strong support for the use of multivariate profile analysis and interval estimate plots for the assessment of solar resource data. A unique view to manufacturing process control in the generation of energy from a PV system is identified. This link between PV energy generation and process control is lacking in the literature and exploited in this study. Variance component models are used to model power output and energy yield estimates of the proposed PV system. The variance components are simulated using Bayesian simulation techniques. Bayesian tolerance intervals are derived from the variance components and are used to determine what percentage of future power output and energy yield values fall within an interval with a certain probability. The results from the estimated tolerance intervals were informative and provided expected power outputs and energy yields for a given month and specific season. The methods improve on current techniques used to assess the energy output of a system.
73

An investigation into the thermo-fluid design and technical feasibility of a practical solar absorption refrigeration cycle

Santos, Nelson de Sousa Pedro dos 15 March 2010 (has links)
M.Eng. / The need and problem was originated from the trends of the earths dwindling energy resource. As time progresses humans are becoming more aware of need to use so called “alternative energy sources” to alleviate the main energy converters i.e. power stations. The student was tasked with investigating the thermal performance of a solar powered refrigeration cycle (prototype) that could: produce enough refrigeration effect that it replaces the standard home vapour compression unit, used for cooling or freezing of foods, heats up a geyser sufficiently to have hot water for a common house hold, has excess energy to heat or cool liquid or air based environments and has the potential to lower the electrical bill of a house. The introductory step was to obtain the thermo fluid properties of aqua ammonia solutions. A setback came about when determining the aqua ammonia properties. There were too many conflicting properties being yielded by six different authors. In an attempt to gain confidence in only one author a comparison table was prepared. The table compared the six authors to each other. By looking at all the values compared it brought great clarity to the problem. When continuing the research into the fundamental law approach of solving for the cycle new findings were made. Initially very little comprehensive studies were done which explained in fundamental laws to solve for the absorption cycle. After extensive reviewing of a detailed study on how to solve for absorption refrigeration cycles, then it was able to begin improving on the thermo – fluid design of the cycle. As cycle and component design began to progress the train of thought began to steer in a direction. Each component needed to be detail designed. The advantage of having each component specifically catered for in the cycle design was that it would increase the cycle efficiency. In this way it would ensure that during the concept generation phase the functioning of each component was clear, thereby enabling a clear understanding of how components would compliment each other in a cycle. A mode of solving for the cycle was to endeavour that all parameters could be calculated unambiguously, with the aid of computerisation. Testing was carried out on a real life commercial thermal siphoning machine in order to realistically understand how absorption refrigeration works and gain experience. At the end of the study the most important result is that the dissertation research shows strong evidence that it will be possible to create a device which can fulfil the four tasks listed above. Another result is a program which is a refined cycle design of the pump absorption type refrigeration. The program solves for points along the cycle. Lastly it was found that even though EES was the simpler program to use for aqua ammonia solution properties it was the only program which catered for sub cooling and super heating.
74

Characterisation of performance limiting defects in photovoltaic devices using electroluminescence and related techniques

Crozier, Jacqueline Louise January 2015 (has links)
Solar cells allow the energy from the sun to be converted into electrical energy; this makes solar energy an environmentally friendly, sustainable alternative to fossil fuel energy sources. Solar cells are connected together in a photovoltaic (PV) module to provide the higher current, voltage and power outputs necessary for electrical applications. However, the performance of PV modules can limited by the degradation and defects. PV modules can be characterised using various opto-electronic techniques, each providing information about the performance of the module. The current-voltage (I-V) characteristic curve of a module being the most commonly used characterisation technique. The I-V curve is typically measured in outdoor, fully illuminated, conditions. This allows performance parameters such as short circuit current (ISC), open circuit voltage (VOC) and maximum power (PMAX) to be determined. However, it can be difficult to determine the root cause of the performance drop from the I-V curve alone. Electroluminescence (EL) is a module characterisation technique that allows defects and failures in PV modules to be successfully identified. This study investigates the characterisation of solar cells and photovoltaic modules using EL. EL occurs when a solar cell or module is forward biased and the injected electron-hole pairs recombine radiatively. The intensity of the emitted EL is related the applied voltage and the material properties. EL imaging is a useful characterisation technique in identifying module defects and failures. Defects such as micro-cracks, broken contact fingers and fractures are detected in EL images as well as material features such as grain boundaries. The common defects in crystalline silicon are catalogued and the possible causes are discussed. An experimental setup was developed in order to systematically take a high resolution EL image of every cell in the module and record the applied voltage and current. This produces a very detailed, clear, image of each cell with a pixel size in the micrometre range. This process is time consuming to acquire an EL image of an entire module so alternatively a different setup can be used and an EL image of a whole module can be captured in a single frame with an increased pixel size in the millimetre range. For EL imaging a silicon charge-coupled device (CCD) camera was used because it has very good spatial resolution however this sensor is only sensitive to wavelength in the range of 300-1200 nm. There is an overlap in wavelengths from about 900 to 1100 nm allowing the EL emitted from silicon solar cells to be detected. In conjunction with the high-resolution EL system an image processing program was developed to crop, adjust and align the images so only the relevant cell was included. This program also automatically detects certain defects that have a regular shape. Micro-cracks, broken fingers and striation rings are automatically identified. The program has an adjustable sensitivity to identify small or large defects. Defective cells are distinguished from undamaged cells by comparing the binary images to the ideal, undamaged cell. The current-voltage curves and the performance parameters of modules were compared with the EL images in order to discuss and identify power limiting defects. Features that remove significant portions of the cell from electrical contact such as micro-cracks are shown to have a larger effect of the performance of the module. Other features such as broken contact fingers, contact forming failures and striation rings do not significantly lower the performance of the module. Thus an understanding of how different features affect the module performance is important in order to correctly interpret the EL results. The intensity of the luminescence emitted is related to the applied voltage and the quantum efficiency of the cell material. The spectrum of the emitted luminescence was modelled and related to the recombination properties of the cell such as surface recombination velocity and minority carrier diffusion length/lifetime. In this study the emitted spectrum was modelled and the effects of recombination properties of the cell on the emitted spectrum were examined. The spectrum of the detected EL was modelled, dependent on the sensitivity of the camera, the transmission of the filters and the emitted photon flux. The integration of short-pass filters into the experimental setup in order to isolate short-wavelength luminescence was discussed. There is a proportional relationship between the intensity of the emitted EL and the local junction voltage. Resistive losses like series and shunt resistances lower the applied voltage and thus affect the EL image. The voltage dependence was assessed by comparing EL images taken at different applied biases. Analysis of the variation in EL intensity with voltage was successful in determining the origin of certain features in an EL image. Certain defects, those that are related to series resistance or shunting are highly voltage dependent. When a feature has little or no dependence on voltage then the defect could be in the laminate layers and not in the cell material. The results of this study allow for in-depth analysis of the defects found in PV modules using the high resolution EL imaging system and the image processing routine. The development of an image processing routine allows the interpretation of the EL image to be done automatically, resulting in a faster and more efficient process. By understanding the defects visible in the EL image, the test is more meaningful and allows the results to be used to predict module performance and potential failures.
75

A photovoltaic-powered pumping system

Liu, Guang January 1989 (has links)
This thesis studies the optimal design for a photovoltaic-powered medium-head (30 meters) water pumping system, with the emphasis on improving the efficiency and reducing the maintenance requirements of the electrical subsystem. The reduction of maintenance requirements is realized by replacing the conventional brush-type permanent magnet dc motor with a brushless dc (BLDC) motor. Different BLDC motor control techniques such as position-sensorless operation, sinusoidal and trapezoidal excitations are investigated. The improvement in efficiency is achieved by maximizing the output power from the photovoltaic array and by minimizing the losses in various parts of the electrical sub-system. A microprocessor-based double-loop maximum power tracking scheme is developed for maximization of the photovoltaic array output power. Over 99% utilization factor is achieved for a typical clear day regardless of the season of the year. The system losses are minimized mainly by performing loss analysis and selecting most suitable switching topologies and switching components. Experimental results show that the combined converter-motor efficiency is comparable to those of high-efficiency brush-type dc motor systems. / Applied Science, Faculty of / Electrical and Computer Engineering, Department of / Graduate
76

Thin Film Group II-VI Solar Cells Based on Band-Offsets

Walton, James Keith 01 January 2010 (has links)
The amount of traditional energy sources are finite and the ecological impact of continuing to produce energy using fossil fuels will only exacerbate the carbon footprint. It is for these reasons that photovoltaic modules are becoming a larger and more necessary part the world's electricity production paradigm. Photovoltaic (PV) semiconductor modules are grouped into three categories. 'First generation' monocrystalline and polycrystalline silicon modules that consist of pn junctions created via the addition of impurities known as dopants. Almost 85% of solar cells produced at this time are `first generation' and it is the high production costs of silicon PV modules that motivated the search for new methods and materials to use as PV cells. 'Second generation' PV modules consist of semiconductor thin films. The 'second generation' PV modules in production at this time are copper indium gallium diselenide (CIGS), copper indium gallium (CIG), amorphous silicon (a-Si), and cadmium telluride (CdTe). The 'third generation' PV modules consist of dye-sensitized and organic materials. Thin films use less material, have less stringent production parameters and less waste, making thin films cost effective. In this investigation, solar cells were prepared using un-doped Group II-VI semiconductor thin films that exploit differences in bandoffsets to form effective p-n heterojunctions as a viable low cost alternative to doping. The thin films were deposited by thermal evaporation upon glass substrates coated with indium tin oxide (ITO). A layer of aluminum formed the back contact. Various configurations of the solar cells were produced including: ITO/CdS/CdSe/Al, ITO/ZnTe/CdSe/Al, ITO/CdTe/CdSe/Al, ITO/ZnTe/CdTe/CdS/Al. The solar cells produced have been characterized to determine thin film internal resistances, quantum and 'wall-plug' efficiencies, as well as I-V and spectral response. The open circuit voltage, short circuit current density, fill factor, and efficiency of our best devices were 0.26 V, 4.6 mA, 27.5 and 0.4% respectively. Additional device optimization should be possible and should improve these results. Solar cell design based on band-offset is an effective method for predetermining likely PV structures, while future investigation using Group II-VI semiconductor nanowires and nanorods and employing epitaxial films are likely to enhance the efficiency.
77

Synthesis of N-doped broken hollow carbon spheres and inorganic-organic hybrid perovskite materials for application in photovoltaic devices

Baloyi, Hajeccarim January 2018 (has links)
A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for degree of Master of Science in Chemistry / The mandate for renewable energy sources to replace the current reliance on fossil fuels as a primary energy source has recently attracted a lot of research interest. The research has also focussed on bringing the technologies that take into consideration the goal of reducing environmental pollution. Consequently, approaches using photovoltaic (PV) technologies have been a promising arena to tackle the problem facing energy sources. Recently, more focus has been placed on improving the power conversion efficiency (PCE) of PV devices, such as organic and/or organic-inorganic hybrid perovskite solar cells. Therefore, in this work two different materials were applied in two independent PV devices, namely organic and/or organic-inorganic hybrid perovskite solar cells. One study employed nitrogen doped broken hollow carbon spheres (N-bHCSs), with an aim of enhancing the electronic properties of the P3HT:PCBM active layer of an organic photovoltaic (OPV) solar cell. N-bHCSs were successfully synthesized using a horizontal chemical vapour deposition method (H-CVD) employing a template-based method and the carbon was doped using in-situ and ex-situ doping techniques. Pyridine, acetonitrile and toluene were used as both carbon and nitrogen precursors. The dispersity of the SiO2 spheres (i.e. templates) was found to play a role on the breakage of the N-bHCSs. Incorporation of the N-bHCSs into the P3HT:PCBM active layer was found to enhance the charge transfer and this led to less recombination of photogenerated charges in the interface between the donor and acceptor. The current-voltage (I-V) characteristics of the ITO/PEPOT:PSS/P3HT:PCBM:N-bHCSs/Al solar cell devices revealed an increased chargetransport distance due to increased electron density by n-type doping from the N-bHCSs. The second study employed the organic-inorganic hybrid perovskite (CH3NH3PbI3) material as a light harvesting layer in an ITO/PEDOT:PSS/CH3NH3PbI3/PC6BM/Al solar cell device. Initially, the device parameters were optimised to obtain the best performing device. These include parameters such as the degradation of the hybrid film as a function of time and air exposure. A rapid degradation was seen on the device after 24 h of air exposure which was accompanied by the decrease in the PV performance of the device. The degradation was visually seen by the formation of crystal grains (i.e. “islands”) on the perovskite film. / GR2019
78

Modeling and Analysis of Solar Arrays for Grid Connected Systems with Maximum Power Point Tracking

Mensah, Adje 01 January 2004 (has links)
The shrinking of the world’s energy sources has prompted an unprecedented interest in renewable and clean energy sources such as photovoltaic (solar) array. Already popular in space and some industrial power system applications, photovoltaic arrays have yet to become a viable source of energy for most terrestrial applications. For several decades now, engineers have been striving to design reliable and affordable solar array based power systems. One popular approach to achieve reliability is the integration of Maximum Power Point Tracking (MPPT) technology in solar power system design. The purpose of this study was to gain more insight into the nature of photovoltaic arrays, in order to help engineers improve solar array systems efficiency and reliability. To this end, a detailed analysis and modeling of the electrical properties and parameters of solar arrays have been presented. Shading effects on solar arrays, as well as the benefits of incorporating MPPT technology in photovoltaic systems have also been studied. Finally an application of MPPT to grid connected systems will be introduced as part of the ongoing efforts of the Power Electronics Lab at the University of Central Florida to participate in the 2005 Future Energy Challenge.
79

Microcomputer based optimization model for photovoltaic system performance analysis

Coulibaly, Ibrahim January 1986 (has links)
This research project deals with the development of a methodology to analyse and design photovoltaic-based power systems. A microcomputer-based interactive photovoltaic (PV) performance analysis package has been developed. This package can be used for screening analysis of various sites, module characteristics and system configurations. Basic elements of this package include: ( i) resource assessment; ( ii) site analysis; (iii) technology assessment; (iv) optimization and choice of system configurations; and (v) life-cycle cost analysis. The resource assessment part of the package is used to estimate the hourly, daily and monthly global horizontal, fixed tilt and one-axis tracking insolation for any site under cloudless sky condition. Site elevation, latitude, longititude and Julian date information are used for this purpose. This insolation level determines the upper limit of possible irradiance at the site under consideration. This value can be adjusted on the basis of climatic conditions (e.g., occurrences of cloudy days and rainfall) prevailing in the area. The site analysis deals with the site's economic and environmental evaluation. The parameters involved in these evaluations are the total land area, the effective area of the site, the area of forest destroyed, the loss of use of the site, the total number of people who are affected by the project, the number of people who benefit from the project, and the purchase price of the site. The technology assessment part of the package deals with the process of creating electricity from solar energy. The D.C. power output of the array is determined by using the global irradiation, the manufacturer-supplied efficiency and dimensions of the module, and the total area of the array. The A.C. power can also be evaluated depending on the power conditioning unit (PCU) efficiency. The optimization and the choice of the system configuration part of the package is used for determining the most optimum use of the candidate site in terms of land availability, land cost and the best possible mix of various PV modules for optimizing the cost of the PV energy within the existing constraints. Finally a life-cycle cost analysis is performed which includes cost of operation, cleaning, maintenance, spare parts, tilting, module, module support, inverter, charge controller, backup system and energy storage. It also takes into consideration the lifetime of the inverter, charge controller, the module, the backup system and the energy storage system. This package has been applied to analyse the performance of various PV modules in two locations. One of the biggest advantages of this package is that it is based on TURBO PASCAL language and runs on the IBM-PC and compatible microcomputers. Thus it is very portable from one operating environment to another, and users can be trained in its application quite easily. / M.S.
80

A methodology for evaluating photovoltaic-fuel hybird energy systems

Khallat, Mohamed Ali January 1986 (has links)
A major issue encountered in the large scale use of Photovoltaic (PV) energy sources for the production of electricity is the variability of the resource itself. Extensive fluctuations of the PV generation may cause dynamic operational problems for an electric utility. In order to remedy this situation it is proposed that fuel cell power plants be operated in parallel with PV arrays. This hybrid operation will help to smooth out the fluctuating PV output. Because of its high ramping capability the fuel cell will be able to absorb such fluctuations. An overall methodology is presented to evaluate the PV system in a large utility. This methodology has two parts-planning and operation. The aim of the planning study is to determine the capacity credit of a PV system based on the loss of load probability (LOLP). Long term SOLMET data is used to determine the nature of available insolation at a particular site. The expected value of hourly insolation is used in the planning study. The aim of the operation study is to validate the results of planning study in the shorter operational time frame, and determine the fuel cell requirements and associated operating cost savings for each penetration level of PV. A technique to find the maximum penetration level of PV, without causing any economic penalty, is presented. It is found that the penetration level can be increased up to 15.62% of peak load by adding fuel cells to the system under consideration. The annual peak load for this system is taken as 6400 MW. It must be mentioned here that, similar evaluations for other systems may yield somewhat different results. This technique is general enough such that it can be used for other intermittent sources of generation as well. / Ph. D.

Page generated in 0.0689 seconds