Spelling suggestions: "subject:"physicallayer"" "subject:"physicallayer.our""
71 |
Resilient Waveform Design for OFDM-MIMO Communication SystemsShahriar, Chowdhury M. R. 23 October 2015 (has links)
This dissertation addresses physical layer security concerns, resiliency of the Orthogonal Frequency Division Multiplexing (OFDM) and the Multiple Input Multiple Output (MIMO) systems; the `de-facto' air-interface of most wireless broadband standards including LTE and WiMAX. The major contributions of this dissertation are: 1) developing jamming taxonomy, 2) proposing OFDM and MIMO equalization jamming attacks and countermeasures, 3) developing antijam (AJ) MIMO systems, and 4) designing null space projected overlapped-MIMO radar waveform for spectrum sharing between radar and communications system.
First, we consider OFDM systems under various jamming attacks. Previous research is focused on jamming OFDM data transmissions. We focus on energy efficient attacks that can disrupt communication severely by exploiting the knowledge of target waveform. Specifically, these attacks seek to manipulate information used by the equalization algorithm to cause errors to a significant number of symbols, i.e., pilot tones jamming and nulling. Potential countermeasures are presented in an attempt to make OFDM waveform robust and resilient. The threats were mitigated by randomizing the location and value of pilot tones, causing the optimal attack to devolve into barrage jamming.
We also address the security aspects of MIMO systems in this dissertation. All MIMO systems need a method to estimate and equalize channel, whether through channel reciprocity or sounding. Most OFDM-based MIMO systems use sounding via pilot tones. Like OFDM attacks, this research introduces MIMO channel sounding attack, which attempts to manipulate pilot tones to skew the channel state information (CSI) at the receiver.
We describe methods of designing AJ MIMO system. The key insight is that many of the theoretical concepts learned from transmit beamforming and interference alignment (IA) in MIMO systems can be applied to the field of AJ and robust communications in the presence of jammers. We consider a realistic jamming scenario and provide a `receiver-only' and a transmitter `precoding' technique that allow a pair of two-antenna transceivers to communicate while being jammed by a malicious non-cooperative single-antenna adversary.
Finally, we consider designing a collocated MIMO radar waveform, which employs a new MIMO architecture where antenna arrays are allowed to overlap. This overlapped-MIMO radar poses many advantages including superior beampattern and improvement in SNR gain. We combine this radar architecture with a projection-based algorithm that allows the radar waveform to project onto the null space of the interference channel of MIMO communications system, thus enabling the coexistence of radar and communications system. / Ph. D.
|
72 |
Coverage, Secrecy, and Stability Analysis of Energy Harvesting Wireless NetworksKishk, Mustafa 03 August 2018 (has links)
Including energy harvesting capability in a wireless network is attractive for multiple reasons. First and foremost, powering base stations with renewable resources could significantly reduce their reliance on the traditional energy sources, thus helping in curtailing the carbon footprint. Second, including this capability in wireless devices may help in increasing their lifetime, which is especially critical for devices for which it may not be easy to charge or replace batteries. This will often be the case for a large fraction of sensors that will form the {em digital skin} of an Internet of Things (IoT) ecosystem. Motivated by these factors, this work studies fundamental performance limitations that appear due to the inherent unreliability of energy harvesting when it is used as a primary or secondary source of energy by different elements of the wireless network, such as mobile users, IoT sensors, and/or base stations.
The first step taken towards this objective is studying the joint uplink and downlink coverage of radio-frequency (RF) powered cellular-based IoT. Modeling the locations of the IoT devices and the base stations (BSs) using two independent Poisson point processes (PPPs), the joint uplink/downlink coverage probability is derived. The resulting expressions characterize how different system parameters impact coverage performance. Both mathematical expressions and simulation results show how these system parameters should be tuned in order to achieve the performance of the regularly powered IoT (IoT devices are powered by regular batteries).
The placement of RF-powered devices close to the RF sources, to harvest more energy, imposes some concerns on the security of the signals transmitted by these RF sources to their intended receivers. Studying this problem is the second step taken in this dissertation towards better understanding of energy harvesting wireless networks. While these secrecy concerns have been recently addressed for the point-to-point link, it received less attention for the more general networks with randomly located transmitters (RF sources) and RF-powered devices, which is the main contribution in the second part of this dissertation.
In the last part of this dissertation, we study the stability of solar-powered cellular networks. We use tools from percolation theory to study percolation probability of energy-drained BSs. We study the effect of two system parameters on that metric, namely, the energy arrival rate and the user density. Our results show the existence of a critical value for the ratio of the energy arrival rate to the user density, above which the percolation probability is zero. The next step to further improve the accuracy of the stability analysis is to study the effect of correlation between the battery levels at neighboring BSs. We provide an initial study that captures this correlation. The main insight drawn from our analysis is the existence of an optimal overlapping coverage area for neighboring BSs to serve each other's users when they are energy-drained. / Ph. D. / Renewable energy is a strong potential candidate for powering wireless networks, in order to ensure green, environment-friendly, and self-perpetual wireless networks. In particular, renewable energy gains its importance when cellular coverage is required in off-grid areas where there is no stable resource of energy. In that case, it makes sense to use solar-powered base stations to provide cellular coverage. In fact, solar-powered base stations are deployed already in multiple locations around the globe. However, in order to extend this to a large scale deployment, many fundamental aspects of the performance of such networks needs to be studied. One of these aspects is the stability of solar-powered cellular networks. In this dissertation, we study the stability of such networks by applying probabilistic analysis that leads to a set of useful system-level insights. In particular, we show the existence of a critical value for the energy intensity, above which the system stability is ensured.
Another type of wireless networks that will greatly benefit from renewable energy is internet of things (IoT). IoT devices usually require several orders of magnitude lower power compared to the base stations. In addition, they are expected to be massively deployed, often in hard-to-reach locations. This makes it impractical or at least cost inefficient to rely on replacing or recharging batteries in these devices. Among many possible resources of renewable energy, radio frequency (RF) energy harvesting is the strongest candidate for powering IoT devices, due to ubiquity of RF signals even at hard-to-reach places. However, relying on RF signals as the sole resource of energy may affect the overall reliability of the IoT. Hence, rigorous performance analysis of RF-powered IoT networks is required. In this dissertation, we study multiple aspects of the performance of such networks, using tools from probability theory and stochastic geometry. In particular, we provide concrete mathematical expressions that can be used to determine the performance drop resulting from using renewable energy as the sole source of power.
One more aspect of the performance of RF-powered IoT is the secrecy of the RF signals used by the IoT devices to harvest energy. The placement of RF-powered devices close to the RF sources, to harvest more energy, imposes some concerns on the security of the signals transmitted by these RF sources to their intended receivers. We study the effect of using secrecy enhancing techniques by the RF sources on the amount of energy harvested by the RF-powered devices. We provide performance comparison of three popular secrecy-enhancing techniques. In particular, we study the scenarios under which each of these techniques outperforms the others in terms of secrecy performance and energy harvesting probability.
This material is based upon work supported by the U.S. National Science Foundation (Grant CCF1464293). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the NSF.
|
73 |
Software-Defined Radio Implementation of Two Physical Layer Security TechniquesRyland, Kevin Sherwood 09 February 2018 (has links)
This thesis discusses the design of two Physical Layer Security (PLS) techniques on Software Defined Radios (SDRs). PLS is a classification of security methods that take advantage of physical properties in the waveform or channel to secure communication. These schemes can be used to directly obfuscate the signal from eavesdroppers, or even generate secret keys for traditional encryption methods. Over the past decade, advancements in Multiple-Input Multiple-Output systems have expanded the potential capabilities of PLS while the development of technologies such as the Internet of Things has provided new applications. As a result, this field has become heavily researched, but is still lacking implementations. The design work in this thesis attempts to alleviate this problem by establishing SDR designs geared towards Over-the-Air experimentation.
The first design involves a 2x1 Multiple-Input Single-Output system where the transmitter uses Channel State Information from the intended receiver to inject Artificial Noise (AN) into the receiver's nullspace. The AN is consequently not seen by the intended receiver, however, it will interfere with eavesdroppers experiencing independent channel fading. The second design involves a single-carrier Alamouti coding system with pseudo-random phase shifts applied to each transmit antenna, referred to as Phase-Enciphered Alamouti Coding (PEAC). The intended receiver has knowledge of the pseudo-random sequence and can undo these phase shifts when performing the Alamouti equalization, while an eavesdropper without knowledge of the sequence will be unable to decode the signal. / Master of Science / This thesis discusses the design of two Physical Layer Security (PLS) techniques. PLS is a classification of wireless communication security methods that take advantage of physical properties in transmission or environment to secure communication. These schemes can be used to directly obfuscate the signal from eavesdroppers, or even generate secret keys for traditional encryption methods. Over the past decade, advancements in Multiple-Input Multiple-Output systems have expanded the potential capabilities of PLS while the development of technologies such as the Internet of Things has provided new applications. As a result, this field has become heavily researched, but is still lacking implementations. The design work in this thesis attempts to alleviate this problem by establishing systems that can be used for laboratory experimentation.
|
74 |
Provisioning Strategies for Transparent Optical Networks Considering Transmission Quality, Security, and Energy EfficiencyJirattigalachote, Amornrat January 2012 (has links)
The continuous growth of traffic demand driven by the brisk increase in number of Internet users and emerging online services creates new challenges for communication networks. The latest advances in Wavelength Division Multiplexing (WDM) technology make it possible to build Transparent Optical Networks (TONs) which are expected to be able to satisfy this rapidly growing capacity demand. Moreover, with the ability of TONs to transparently carry the optical signal from source to destination, electronic processing of the tremendous amount of data can be avoided and optical-to-electrical-to-optical (O/E/O) conversion at intermediate nodes can be eliminated. Consequently, transparent WDM networks consume relatively low power, compared to their electronic-based IP network counterpart. Furthermore, TONs bring also additional benefits in terms of bit rate, signal format, and protocol transparency. However, the absence of O/E/O processing at intermediate nodes in TONs has also some drawbacks. Without regeneration, the quality of the optical signal transmitted from a source to a destination might be degraded due to the effect of physical-layer impairments induced by the transmission through optical fibers and network components. For this reason, routing approaches specifically tailored to account for the effect of physical-layer impairments are needed to avoid setting up connections that don’t satisfy required signal quality at the receiver. Transparency also makes TONs highly vulnerable to deliberate physical-layer attacks. Malicious attacking signals can cause a severe impact on the traffic and for this reason proactive mechanisms, e.g., network design strategies, able to limit their effect are required. Finally, even though energy consumption of transparent WDM networks is lower than in the case of networks processing the traffic at the nodes in the electronic domain, they have the potential to consume even less power. This can be accomplished by targeting the inefficiencies of the current provisioning strategies applied in WDM networks. The work in this thesis addresses the three important aspects mentioned above. In particular, this thesis focuses on routing and wavelength assignment (RWA) strategies specifically devised to target: (i) the lightpath transmission quality, (ii) the network security (i.e., in terms of vulnerability to physical-layer attacks), and (iii) the reduction of the network energy consumption. Our contributions are summarized below. A number of Impairment Constraint Based Routing (ICBR) algorithms have been proposed in the literature to consider physical-layer impairments during the connection provisioning phase. Their objective is to prevent the selection of optical connections (referred to as lightpaths) with poor signal quality. These ICBR approaches always assign each connection request the least impaired lightpath and support only a single threshold of transmission quality, used for all connection requests. However, next generation networks are expected to support a variety of services with disparate requirements for transmission quality. To address this issue, in this thesis we propose an ICBR algorithm supporting differentiation of services at the Bit Error Rate (BER) level, referred to as ICBR-Diff. Our approach takes into account the effect of physical-layer impairments during the connection provisioning phase where various BER thresholds are considered for accepting/blocking connection requests, depending on the signal quality requirements of the connection requests. We tested the proposed ICBR-Diff approach in different network scenarios, including also a fiber heterogeneity. It is shown that it can achieve a significant improvement of network performance in terms of connection blocking, compared to previously published non-differentiated RWA and ICBR algorithms. Another important challenge to be considered in TONs is their vulnerability to physical-layer attacks. Deliberate attacking signals, e.g., high-power jamming, can cause severe service disruption or even service denial, due to their ability to propagate in the network. Detecting and locating the source of such attacks is difficult, since monitoring must be done in the optical domain, and it is also very expensive. Several attack-aware RWA algorithms have been proposed in the literature to proactively reduce the disruption caused by high-power jamming attacks. However, even with attack-aware network planning mechanisms, the uncontrollable propagation of the attack still remains an issue. To address this problem, we propose the use of power equalizers inside the network nodes in order to limit the propagation of high-power jamming attacks. Because of the high cost of such equipment, we develop a series of heuristics (incl. Greedy Randomized Adaptive Search Procedure (GRASP)) aiming at minimizing the number of power equalizers needed to reduce the network attack vulnerability to a desired level by optimizing the location of the equalizers. Our simulation results show that the equalizer placement obtained by the proposed GRASP approach allows for 50% reduction of the sites with the power equalizers while offering the same level of attack propagation limitation as it is possible to achieve with all nodes having this additional equipment installed. In turn, this potentially yields a significant cost saving. Energy consumption in TONs has been the target of several studies focusing on the energy-aware and survivable network design problem for both dedicated and shared path protection. However, survivability and energy efficiency in a dynamic provisioning scenario has not been addressed. To fill this gap, in this thesis we focus on the power consumption of survivable WDM network with dynamically provisioned 1:1 dedicated path protected connections. We first investigate the potential energy savings that are achievable by setting all unused protection resources into a lower-power, stand-by state (or sleep mode) during normal network operations. It is shown that in this way the network power consumption can be significantly reduced. Thus, to optimize the energy savings, we propose and evaluate a series of energy-efficient strategies, specifically tailored around the sleep mode functionality. The performance evaluation results reveal the existence of a trade-off between energy saving and connection blocking. Nonetheless, they also show that with the right provisioning strategy it is possible to save a considerable amount of energy with a negligible impact on the connection blocking probability. In order to evaluate the performance of our proposed ICBR-Diff and energy-aware RWA algorithms, we develop two custom-made discrete-event simulators. In addition, the Matlab program of GRASP approach for power equalization placement problem is implemented. / <p>QC 20120508</p>
|
75 |
Secret key generation from reciprocal spatially correlated MIMO channelsJorswieck, Eduard A., Wolf, Anne, Engelmann, Sabrina 16 June 2014 (has links) (PDF)
Secret key generation from reciprocal multi-antenna channels is an interesting alternative to cryptographic key management in wireless systems without infrastructure access. In this work, we study the secret key rate for the basic source model with a MIMO channel. First, we derive an expression for the secret key rate under spatial correlation modelled by the Kronecker model and with spatial precoding at both communication nodes. Next, we analyze the result for uncorrelated antennas to understand the optimal precoding for this special case, which is equal power allocation. Then, the impact of correlation is characterized using Majorization theory. Surprisingly for small SNR, spatial correlation increases the secret key rate. For high SNR, the maximum secret key rate is achieved for uncorrelated antennas. The results indicate that a solid system design for reciprocal MIMO key generation is required to establish the secret key rate gains.
|
76 |
Low Density Parity Check (LDPC) codes for Dedicated Short Range Communications (DSRC) systemsKhosroshahi, Najmeh 03 August 2011 (has links)
In this effort, we consider the performance of a dedicated short range communication (DSRC) system for inter-vehicle communications (IVC). The DSRC standard employs convolutional codes for forward error correction (FEC). The performance of the DSRC system is evaluated in three different channels with convolutional codes, regular low density parity check (LDPC) codes and quasi-cyclic (QC) LDPC codes. In addition, we compare the complexity of these codes. It is shown that LDPC and QC-LDPC codes provide a significant improvement in performance compared to convolutional codes. / Graduate
|
77 |
Analysis on MIMO relaying scenarios in wireless communication systemsJayasinghe, L. K. (Laddu Keeth Saliya) 02 February 2015 (has links)
Abstract
The thesis concentrates on evaluating and improving performances of various multiple-input multiple-output (MIMO) relaying scenarios that are particularly relevant to future wireless systems. A greater emphasis is placed on important practical situations, considering relay deployments, availability of channel state information (CSI), limitations of spectrum, and information secrecy.
Initially, the performance of a non-coherent amplify-and-forward (AF) MIMO relaying is analyzed when the relay is deployed with the relay-to-destination channel having a line-of-sight (LoS) path. The main attention is given to analyzing the performance of orthogonal space-time block coded based non-coherent AF MIMO system. Exact expressions of statistical parameters and performance metrics are derived considering the instantaneous signal-to-noise ratio (SNR) received at the destination. These performance metrics reveal that a strong LoS component in relay-destination channel always limits the performance promised by MIMO scattering environment when both nodes have multiple antennas.
The thesis also considers scenarios in MIMO two-way relaying (TWR) with physical layer network coding (PNC) mapping at the relay. PNC mapping becomes complex with multiple streams being combined at the relay node. Joint precoder-decoder schemes are considered to ease this, and various studies are carried out depending on the CSI. The zero-forcing criterion is used at the nodes when perfect CSI is available. For the imperfect CSI scenario, a robust joint precoder-decoder design is considered. The precoder and decoder matrices are obtained by solving optimization problems, which are formulated to maximize sum-rate and minimize weighted mean square error (WMSE) under transmit power constraints on the nodes.
Next, a precoder-decoder scheme for MIMO underlay device-to-device (D2D) communication system is investigated by considering two D2D modes; PNC based D2D and direct D2D. The joint design is based on minimizing mean square error (MSE) which is useful to mitigate interference, and to improve the performance of both D2D and cellular communications. Distributed and centralized algorithms are proposed considering bi-directional communication in both D2D and cellular communications. System performance is discussed with two transmit mode selection schemes as dynamic and static selection schemes. The results show that the PNC based D2D mode extends the coverage area of D2D communication.
Finally, secure beamforming schemes for the PNC based MIMO TWR systems are investigated when multiple eavesdroppers are attempting to intercept the user information. The CSI of the user-to-eavesdropper channels is imperfect at the users. The channel estimation errors are assumed with both ellipsoidal bound and Gaussian Markov uncertainty models. Robust optimization problems are formulated considering both scenarios to design beamforming vectors at the users and relay. Numerical results suggest that the proposed algorithms converge fast and provide higher security. / Tiivistelmä
Tässä väitöskirjassa keskitytään arvioimaan ja parantamaan suorituskykyä useissa moniantennitoistinjärjestelmissä, jotka ovat ajankohtaisia tulevaisuuden langattomissa verkoissa. Erityisesti työssä analysoidaan tärkeitä käytännön tilanteita, sisältäen toistimien sijoittamisen, kanavatiedon saatavuuden, rajoitetun taajuuskaistan ja tiedon salauksen.
Aluksi epäkoherentin, vahvistavan ja jatkolähettävän moniantennitoistimen suorituskykyä analysoidaan tilanteessa, jossa toistin on sijoitettu siten, että kohteeseen on suora yhteys. Suorituskyvyn arvioinnin pääkohteena on ortogonaalinen tila-aika-tason lohkokoodattu epäkoherentti vahvistava ja jatkolähettävä moniantennitoistin. Työssä johdetaan tarkat lausekkeet tilastollisille parametreille ja suorituskykymittareille ottaen huomioon hetkellinen signaalikohinasuhde vastaanottimessa. Nämä suorituskykymittarit ilmaisevat, että toistimen ja kohteen välillä oleva vahva suoran yhteyden komponentti rajoittaa sitä suorituskykyä, jota moniantennijärjestelmän hajontaympäristö ennustaa.
Työssä tutkitaan myös kahdensuuntaisia moniantennitoistimia, jotka käyttävät fyysisen kerroksen verkkokoodausta. Koodauksesta tulee monimutkaista, kun monia datavirtoja yhdistetään toistimessa. Tämän helpottamiseksi käytetään yhdistettyä esikoodaus-dekoodausmenetelmää, jota tutkitaan erilaisten kanavatietojen tapauksissa. Täydellisen kanavatiedon tapauksessa käytetään nollaanpakotuskriteeriä. Epätäydellisen kanavatiedon tapauksessa käytetään robustia yhdistettyä esikoodaus-dekoodausmenetelmää. Esikoodaus- ja dekoodausmatriisit saadaan ratkaisemalla optimointiongelmat. Nämä ongelmat on muodostettu maksimoimaan summadatanopeus, ja minimoimaan painotettu keskineliövirhe, kun optimointirajoitteina ovat solmujen lähetystehot.
Seuraavaksi esikoodaus-dekoodausmenetelmää tutkitaan moniantennijärjestelmässä, jossa käytetään kahdentyyppistä laitteesta-laitteeseen (D2D) kommunikaatiomenetelmää: fyysisen kerroksen verkkokoodaukseen pohjautuvaa D2D- ja suoraa D2D-kommunikaatiota. Yhteissuunnittelu perustuu keskineliövirheen minimointiin, joka on hyödyllistä, kun halutaan vähentää häiriötä ja parantaa molempien verkkojen suorituskykyä. Työssä ehdotetaan hajautettuja ja keskitettyjä algoritmeja tilanteessa, jossa käytetään kaksisuuntaista kommunikaatiota molemmissa verkoissa. Järjestelmän suorituskykyä arvioidaan, kun käytetään kahta eri lähetystilan valintaa, dynaamista ja staattista. Tulokset osoittavat, että fyysisen kerroksen verkkokoodaukseen pohjautuva D2D kasvattaa D2D-kommunikaatiojärjestelmän kantamaa.
Lopuksi, turvallisia keilanmuodostustekniikoita arvioidaan fyysisen kerroksen verkkokoodaukseen pohjautuvassa kahdensuuntaisessa moniantennitoistinjärjestelmässä, kun useat salakuuntelijat yritävät siepata käyttäjätiedon. Käyttäjillä on epäideaalinen kanavatieto heidän ja salakuuntelijoiden välisten linkkien kanavista. Kanavatiedon estimointivirheitä arvioidaan ellipsoidisella ja Gauss-Markov-epävarmuusmallilla. Robustit optimointiongelmat, joissa suunnitellaan keilanmuodostusvektorit käyttäjän ja toistimen välille, muodostetaan molemmille malleille. Numeeriset tulokset osoittavat, että ehdotetut algoritmit konvergoituvat nopeasti ja tarjoavat korkeamman turvallisuuden.
|
78 |
Physical-Layer Security in Orbital Angular Momentum Multiplexing Free-Space Optical CommunicationsSun, Xiaole, Djordjevic, Ivan B. 02 1900 (has links)
The physical-layer security of a line-of-sight (LOS) free-space optical (FSO) link using orbital angular momentum (OAM) multiplexing is studied. We discuss the effect of atmospheric turbulence to OAM-multiplexed FSO channels. We numerically simulate the propagation of OAM-multiplexed beam and study the secrecy capacity. We show that, under certain conditions, the OAM multiplexing technique provides higher security over a single-mode transmission channel in terms of the total secrecy capacity and the probability of achieving a secure communication. We also study the power cost effect at the transmitter side for both fixed system power and equal channel power scenarios.
|
79 |
On applications of puncturing in error-correction codingKlinc, Demijan 05 April 2011 (has links)
This thesis investigates applications of puncturing in error-correction coding and physical layer security with an emphasis on binary and non-binary LDPC codes.
Theoretical framework for the analysis of punctured binary LDPC codes at short block lengths is developed and a novel decoding scheme is designed that achieves considerably faster convergence than conventional approaches. Subsequently, optimized puncturing and shortening is studied for non-binary LDPC codes over binary input channels. Framework for the analysis of punctured/shortened non-binary LDPC codes over the BEC channel is developed, which enables the optimization of puncturing and shortening patterns. Insight from this analysis is used to develop algorithms for puncturing and shortening of non-binary LDPC codes at finite block lengths that perform well. It is confirmed that symbol-wise puncturing is generally bad and that bit-wise punctured non-binary LDPC codes can significantly outperform their binary counterparts, thus making them an attractive solution for future communication systems; both for error-correction and distributed compression.
Puncturing is also considered in the context of physical layer security. It is shown that puncturing can be used effectively for coding over the wiretap channel to hide the message bits from eavesdroppers. Further, it is shown how puncturing patterns can be optimized for enhanced secrecy. Asymptotic analysis confirms that eavesdroppers are forced to operate at BERs very close to 0.5, even if their signal is only slightly worse than that of the legitimate receivers. The proposed coding scheme is naturally applicable at finite block lengths and allows for efficient, almost-linear time encoding.
Finally, it is shown how error-correcting codes can be used to solve an open problem of compressing data encrypted with block ciphers such as AES. Coding schemes for multiple chaining modes are proposed and it is verified that considerable compression gains are attainable for binary sources.
|
80 |
Coding techniques for multi-user physical layer securityPierrot, Alexandre Jean Louis J. 21 September 2015 (has links)
The fast development of wireless networks, which are intrinsically exposed to eavesdropping, has created a growing concern for confidentiality. While classical cryptographic schemes require a key provided by the end-user, physical-layer security leverages the randomness of the physical communication medium as a source of secrecy. The main benefit of physical-layer security techniques is their relatively low cost and their ability to combine with any existing security mechanisms. This dissertation provides an analysis including the theoretical study of the two-way wiretap channel to obtain a better insight into how to design coding mechanisms, practical tests with experimental systems, and the design of actual codes. From a theoretical standpoint, the study confirms the benefits of combining several multi-user coding techniques including cooperative jamming, coded cooperative jamming and secret key generation. For these different mechanisms, the trade-off between reliability, secrecy and communication rate is clarified under a stringent strong secrecy metric. Regarding the design of practical codes, spatially coupled LDPC codes, which were originally designed for reliability, are modified to develop a coded cooperative jamming code. Finally, a proof-of-principle practical wireless system is provided to show how to implement a secret key generation system on experimental programmable radios. This testbed is then used to assess the realistic performance of such systems in terms of reliability, secrecy and rate.
|
Page generated in 0.051 seconds