• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 4
  • Tagged with
  • 36
  • 36
  • 9
  • 8
  • 8
  • 7
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Fragmentation of molecular ions in ultrafast laser pulses

Ablikim, Utuq January 1900 (has links)
Master of Science / Department of Physics / Itzhak Ben-Itzhak / Imaging the interaction of molecular ion beams with ultrafast intense laser fields is a very powerful method to understand the fragmentation dynamics of molecules. Femtosecond laser pulses with different wavelengths and intensities are applied to dissociate and ionize molecular ions, and each resulting fragmentation channel can be studied separately by implementing a coincidence three-dimensional (3D) momentum imaging method. The work presented in this master’s report can be separated into two parts. First, the interaction between molecular ion beams and femtosecond laser pulses, in particular, the dissociation of CO[superscript]+ into C[superscript]++O, is studied. For that purpose, measurements are conducted at different laser intensities and wavelengths to investigate the possible pathways of dissociation into C[superscript]++O. The study reveals that CO[superscript]+ starts to dissociate from the quartet electronic state at low laser intensities. Higher laser intensity measurements, in which a larger number of photons can be absorbed by the molecule, show that the doublet electronic states with deeper potential wells, e.g. A [superscript]2Π, contribute to the dissociation of the molecule. In addition, the three-body fragmentation of CO[subscript]2[superscript]+ into C[superscript]++O[superscript]++O[superscript]+ is studied, and two breakup scenarios are separated using the angle between the sum and difference of the momentum vectors of two O[superscript]+ fragments. In the second part, improvements in experimental techniques are discussed. Development of a reflective telescope setup intended to increase the conversion efficiency of ultraviolet (UV) laser pulse generation is described, and the setup is used in the studies of CO[superscript]+ dissociation described in this report. The other technical study presented here is the measurement of the position dependence of timing signals picked off of a microchannel plate (MCP) surface. The experimental method is presented and significant time spread over the surface of the MCP detector is reported [1].
22

Coherent control over strong-field dissociation of heteronuclear diatomic molecules

Rigsbee, Brandon January 1900 (has links)
Master of Science / Department of Physics / Brett D. Esry / In the last 20 years, advancements in laser technology have allowed for the production of intense laser pulses with durations in the femtosecond (10⁻¹⁵ second) regime, giving scientists the ability to probe nuclear dynamics on their natural time scale. Study of the dissociated fragments created by these intense fields can be used to learn about the molecular structure and dynamics. The work presented in this thesis focuses on controlling this light–molecule interaction in such a way that we can preferentially dissociate the molecule to a desired final product. The hydrogen molecular ion, HD⁺, as well as LiF serve as simple systems that can be studied theoretically for a broad range of laser parameters. Our goal in using these relatively simple systems is to capture the essential physics of the light–molecule interaction and develop general methods to describe these interactions in more complex systems.
23

Theory of nonlinear propagation of high harmonics generated in a gaseous medium

Jin, Cheng January 1900 (has links)
Doctor of Philosophy / Department of Physics / Chii-Dong Lin / In this thesis, we establish the theoretical tools to investigate high-order harmonic generation (HHG) by intense infrared lasers in a gaseous medium. The macroscopic propagation of both the fundamental and the harmonic fields is taken into account by solving Maxwell’s wave equations, while the single-atom (or single-molecule) response is obtained by quantitative rescattering theory. The initial spatial mode of the fundamental laser is assumed either a Gaussian or a truncated Bessel beam. On the examples of Ar, N[subscript]2 and CO[subscript]2, we demonstrate that the available experimental HHG spectra with isotropic and aligned target media can be accurately reproduced theoretically even though the HHG spectra are sensitive to the experimental conditions. We show that the macroscopic HHG can be expressed as a product of a macroscopic wave packet and a photorecombination cross section, where the former depends on laser and experimental conditions while the latter is the property of the target only. The factorization makes it possible to retrieve the single-atom or single-molecule structure information from experimental HHG spectra. As for the multiple molecular orbital contribution in HHG, it causes the disappearance of the minimum in the HHG spectrum of aligned N[subscript]2 with the increase of laser intensity, and the position of minimum in HHG spectrum of aligned CO[subscript]2 depending on many factors is also attributed to it, which could explain why the minima observed in different laboratories may differ. For an important application of HHG as ultrashort light source, we show that measured continuous harmonic spectrum of Xe due to the reshaping of the fundamental laser field can be used to produce an isolated attosecond pulse by spectral and spatial filtering in the far field. For on-going application of using HHG to ionize aligned molecules, we present the photoelectron angular distribution from aligned N[subscript]2 and CO[subscript]2 in the laboratory frame, which can be compared directly with future experiments.
24

Observational constraints on dark energy cosmological model parameters

Farooq, Muhammad Omer January 1900 (has links)
Doctor of Philosophy / Department of Physics / Bharat Ratra / The expansion rate of the Universe changes with time, initially slowing (decelerating) when the universe was matter dominated, because of the mutual gravitational attraction of all the matter in it, and more recently speeding up (accelerating). A number of cosmological observations now strongly support the idea that the Universe is spatially flat (provided the dark energy density is at least approximately time independent) and is currently undergoing an accelerated cosmological expansion. A majority of cosmologists consider ``dark energy" to be the cause of this observed accelerated cosmological expansion. The ``standard" model of cosmology is the spatially-flat $\Lambda$CDM model. Although most predictions of the $\Lambda$CDM model are reasonably consistent with measurements, the $\Lambda$CDM model has some curious features. To overcome these difficulties, different Dark Energy models have been proposed. Two of these models, the XCDM parametrization and the slow rolling scalar field model $\phi$CDM, along with ``standard" $\Lambda$CDM, with the generalization of XCDM and $\phi$CDM in non-flat spatial geometries are considered here and observational data are used to constrain their parameter sets. In this thesis, we start with a overview of the general theory of relativity, Friedmann's equations, and distance measures in cosmology. In the following chapters we explain how we can constrain the three above mentioned cosmological models using three data sets: measurements of the Hubble parameter $H(z)$, Supernova (SN) apparent magnitudes, and the baryonic acoustic oscillations (BAO) peak length scale, as functions of redshift $z$. We then discuss constraints on the deceleration-acceleration transition redshift $z_{\rm da}$ using unbinned and binned $H(z)$ data. Finally, we incorporate the spatial curvature in the XCDM and $\phi$CDM model and determine observational constraints on the parameters of these expanded models.
25

A conceptual model for facilitating learning from physics tasks using visual cueing and outcome feedback: theory and experiments

Agra, Elise Stacey Garasi January 1900 (has links)
Doctor of Philosophy / Physics / Nobel S. Rebello / This dissertation investigates the effects of visual cueing and outcome feedback on students' performance, confidence, and visual attention as they solve conceptual physics problems that contain diagrams. The research investigation had two parts. In the first part of the study, participants solved four sets of conceptual physics problems that contain diagrams; each set contained an initial problem, four isomorphic training problems, a near transfer problem (with a slightly different surface feature as the training problems), and a far transfer problem (with considerably different surface feature as the training problems). Participants in the cued conditions saw visual cues overlaid on the training problem diagrams, while those in the feedback conditions were told if their responses were correct or incorrect. In the second part of the study, the same students solved the near and far transfer problems from the first study two weeks later. We found that the combination of visual cueing and outcome feedback improved performance on the near transfer and delayed near transfer problems compared to the initial problem, with no significant difference between them. Thus, the combination of visual cueing and outcome feedback can promote immediate learning and retention. For students who demonstrated immediate learning and retention on the near and far transfer problems, visual cues improved the automaticity of extracting relevant information from the transfer and delayed transfer problem diagrams, while outcome feedback helped automatize the extraction of problem-relevant information on the delayed far transfer problem diagram only. We also showed that students' reported confidence in solving a problem is positively related to their correctness on the problem, and their visual attention to the relevant information on the problem diagram. The most interesting thing was how changes in confidence occurred due to outcome feedback, which were also related to changes in accuracy and visual attention. The changes in confidence included both reductions in confidence and increases in confidence due to feedback when the student was wrong (first) and right (later). This seems to have led to learning (change in accuracy), and also changes in attentional allocation (more attention to the thematically relevant area).
26

Optical properties of ALN and deep UV photonic structures studied by photoluminescence

Sedhain, Ashok January 1900 (has links)
Doctor of Philosophy / Department of Physics / Jingyu Lin / Time-resolved deep ultraviolet (DUV) Photoluminescence (PL) spectroscopy system has been employed to systematically monitor crystalline quality, identify the defects and impurities, and investigate the light emission mechanism in III-nitride semiconducting materials and photonic structures. A time correlated single photon counting system and streak camera with corresponding time resolutions of 20 and 2 ps, respectively, were utilized to study the carrier excitation and recombination dynamics. A closed cycle He-flow cryogenic system was employed for temperature dependent measurements. This system is able to handle sample temperatures in a wide range (from 10 to 900 K). Structural, electrical, and morphological properties of the material were monitored by x-ray diffraction (XRD), Hall-effect measurement, and atomic force microscopy (AFM), respectively. Most of the samples studied here were synthesized in our laboratory by metal organic chemical vapor deposition (MOCVD). Some samples were bulk AlN synthesized by our collaborators, which were also employed as substrates for homoepilayer growth. High quality AlN epilayers with (0002) XRD linewidth as narrow as 50 arcsec and screw type dislocation density as low as 5x10[superscript]6 cm[superscript]-2 were grown on sapphire substrates. Free exciton transitions related to all valence bands (A, B, and C) were observed in AlN directly by PL, which allowed the evaluation of crystal field (Δ[subscript]CF) and spin-orbit (Δ[subscript]SO) splitting parameters exerimentally. Large negative Δ[subscript]CF and, consequently, the difficulties of light extraction from AlN and Al-rich AlGaN based emitters due to their unique optical polarization properties have been further confirmed with these new experimental data. Due to the ionic nature of III-nitrides, exciton-LO phonon Frohlich interaction is strong in these materials, which is manifested by the appearance of phonon replicas accompanying the excitonic emission lines in their PL spectra. The strength of the exciton-phonon interactions in AlN has been investigated by measuring the Huang-Rhys factor. It compares the intensity of the zero phonon (exciton emission) line relative to its phonon replica. AlN bulk single crystals, being promising native substrate for growing nitride based high quality device structures with much lower dislocation densities (<10[superscript]4 cm[superscript]-2), are also expected to be transparent in visible to UV region. However, available bulk AlN crystals always appear with an undesirable yellow or dark color. The mechanism of such undesired coloration has been investigated. MOCVD was utilized to deposit ~0.5 μm thick AlN layer on top of bulk crystal. The band gap of strain free AlN homoepilayers was 6.100 eV, which is ~30 meV lower compared to hetero-epitaxial layers on sapphire possessing compressive strain. Impurity incorporation was much lower in non-polar m-plane growth mode and the detected PL signal at 10 K was about an order of magnitude higher from a-plane homo-epilayers compared to that from polar c-plane epilayers. The feasibility of using Be as an alternate p-type dopant in AlN has been studied. Preliminary studies indicate that the Be acceptor level in AlN is ~330 meV, which is about 200 meV shallower than the Mg level in AlN. Understanding the optical and electronic properties of native point defects is the key to achieving good quality material and improving overall device performance. A more complete picture of optical transitions in AlN and GaN has been reported, which supplements the understanding of impurity transitions in AlGaN alloys described in previous reports.
27

Nanomechanical properties of single protein molecules and peptides

Ploscariu, Nicoleta T. January 1900 (has links)
Master of Science / Department of Physics / Robert Szoszkiewicz / Proteins are involved in many of the essential cellular processes, such as cell adhesion, muscle function, enzymatic activity or signaling. It has been observed that the biological function of many proteins is critically connected to their folded conformation. Thus, the studies of the process of protein folding have become one of the central questions at the intersection of biophysics and biochemistry. We propose to use the changes of the nanomechanical properties of these biomolecules as a proxy to study how the single proteins fold. In the first steps towards this goal, the work presented in this thesis is concentrated on studies of unfolding forces and pathways of one particular multidomain protein, as well as on development of the novel method to study elastic spring constant and mechanical energy dissipation factors of simple proteins and peptides. In the first part of this thesis we present the results of the mean unfolding forces of the NRR region of the Notch1 protein. Those results are obtained using force spectroscopy techniques with the atomic force microscope (AFM) on a single molecule level. We study force-induced protein unfolding patterns and relate those to the conformational transitions within the protein using available crystal structure of the Notch protein and molecular dynamics simulations. Notch is an important protein, involved in triggering leukemia and breast cancers in metazoans, i.e., animals and humans. In the second part of this thesis we develop a model to obtain quantitative measurements of the molecular stiffness and mechanical energy dissipation factors for selected simple proteins and polypeptides from the AFM force spectroscopy measurements. We have developed this model by measuring the shifts of several thermally excited resonance frequencies of atomic force microscopy cantilevers in contact with the biomolecules. Next, we provided partial experimental validation of this model using peptide films. Ultimately, our results are expected to contribute in the future to the developments of medical sciences, which are advancing at a level, where human health and disease can be traced down to molecular scale.
28

Controlling the dynamics of electrons and nuclei in ultrafast strong laser fields

Kling, Nora G. January 1900 (has links)
Doctor of Philosophy / Department of Physics / Itzik Ben-Itzhak / One ultimate goal of ultrafast, strong- field laser science is to coherently control chemical reactions. Present laser technology allows for the production of intense (>10[superscript]13 W/cm[superscript]2), ultrashort ( 5 fs), carrier-envelope phase-stabilized pulses. By knowing the electric field waveform, sub-cycle resolution on the order of 100's of attoseconds (1 as=10[superscript]-18 s) can be reached -- the timescale for electron motion. Meanwhile, the laser field strengths are comparable to that which binds electrons to atoms or molecules. In this intense-field ultrashort-pulse regime one can both measure and manipulate dynamics of strong-field, quantum-mechanical processes in atoms and molecules. Despite much progress in the technology, typical durations for which lasers can be reliably locked to a specific carrier-envelope phase ranges from a few minutes to a few hours. Experiments investigating carrier-envelope phase effects that have necessarily long data acquisition times, such as those requiring coincidence between fragments originating from the same atom or molecule, are thus challenging and uncommon. Therefore, we combined the new technology for measuring the carrier-envelope phase of each and every laser shot with other single-shot coincidence three-dimensional momentum imaging techniques to alleviate the need for carrier-envelope phase stabilized laser pulses. Using phase-tagged coincidence techniques, several targets and laser-induced processes were studied. One particular highlight uses this method to study the recollision process of non-sequential double ionization of argon. By measuring the momentum of the two electrons emitted in the process, we could study their energy sharing. Furthermore, by selecting certain carrier-envelope phase values, and therefore laser pulses with a particular waveform, events with single recollision could be isolated and further analyzed. Another highlight is our studies of carrier-envelope phase effects in the dissociation of the benchmark H[subscript]2[superscript[+] ion beam. Aided by near-exact quantum mechanical calculations, we could identify interfering pathways which lead to the observed spatial asymmetry. These and other similar experiments are described in this thesis as significant steps toward their ultimate control.
29

Ultrafast imaging: laser induced electron diffraction

Xu, Junliang January 1900 (has links)
Doctor of Philosophy / Department of Physics / Chii-Dong Lin / Imaging of molecules has always occupied an essential role in physical, chemical and biological sciences. X-ray and electron diffraction methods routinely achieve sub-angstrom spatial resolutions but are limited to probing dynamical timescales longer than a picosecond. With the advent of femtosecond intense lasers, a new imaging paradigm emerges in last decade based on laser-induced electron diffraction (LIED). It has been placed on a firm foundation by the quantitative rescattering theory, which established that large-angle e-ion elastic differential cross sections (DCS) can be retrieved from the LIED spectrum. We further demonstrate that atomic potentials can be accurately retrieved from those extracted DCSs at energies from a few to several tens of electron volts. Extending to molecules, we show mid-infrared (mid-IR) lasers are crucial to generate high-energy electron wavepackets (> 100 eV) to resolve the atomic positions in a molecule. These laser-driven 100 eV electrons can incur core-penetrating collisions where the momentum transfer is comparable to those attained in conventional keV electron diffraction. Thus a simple independent atom model (IAM), which has been widely used in conventional electron diffractions, may apply for LIED. We theoretically examine and validate the applicability of IAM for electron energies above 100 eV using e-molecule large-angle collision data obtained in conventional experiments, demonstrating its resolving powers for bond lengths about 0.05 angstrom. The Validity of IAM is also checked by an experimental LIED investigation of rare gas atoms in the mid-IR regime. We show that the electron’s high energy promotes core-penetrating collisions at large scattering angles, where the e-atom interaction is dominated by the strong short range atomic-like potential. Finally, we analyze the measured LIED spectrum of N[subscript]2 and O[subscript]2 at three mid-IR wavelengths (1.7, 2.0, and 2.3 μm). As expected, the retrieved bond lengths of N[subscript]2 at three wavelengths are about same as the equilibrium N[subscript]2 bond length. For O[subscript]2, the data is also consistent with a bond length contraction of 0.1 angstrom within 4-6 fs after tunnel ionization. This investigation establishes a foundation for this novel imaging method for spatiotemporal imaging of gas-phase molecules at the atomic scale.
30

Quantum control of molecular fragmentation in strong laser field

Zohrabi, Mohammad January 1900 (has links)
Doctor of Philosophy / Department of Physics / Itzhak Ben-Itzhak / Present advances in laser technology allow the production of ultrashort (≲5 fs, approaching single cycle at 800 nm), intense tabletop laser pulses. At these high intensities laser-matter interactions cannot be described with perturbation theory since multiphoton processes are involved. This is in contrast to photodissociation by the absorption of a single photon, which is well described by perturbation theory. For example, at high intensities (≳5×10[superscript]13 W/cm[superscript]2) the fragmentation of molecular hydrogen ions has been observed via the absorption of three or more photons. In another example, an intriguing dissociation mechanism has been observed where molecular hydrogen ions seem to fragment by apparently absorbing no photons. This is actually a two photon process, photoabsorption followed by stimulated emission, resulting in low energy fragments. We are interested in exploring these kinds of multiphoton processes. Our research group has studied the dynamics and control of fragmentation induced by strong laser fields in a variety of molecular targets. The main goal is to provide a basic understanding of fragmentation mechanisms and possible control schemes of benchmark systems such as H[subscript]2[superscript]+. This knowledge is further extended to more complex systems like the benchmark H[subscript]3[superscript]+ polyatomic and other molecules. In this dissertation, we report research based on two types of experiments. In the first part, we describe laser-induced fragmentation of molecular ion-beam targets. In the latter part, we discuss the formation of highly-excited neutral fragments from hydrogen molecules using ultrashort laser pulses. In carrying out these experiments, we have also extended experimental techniques beyond their previous capabilities. We have performed a few experiments to advance our understanding of laser-induced fragmentation of molecular-ion beams. For instance, we explored vibrationally resolved spectra of O[subscript]2[superscript]+ dissociation using various wavelengths. We observed a vibrational suppression effect in the dissociation spectra due to the small magnitude of the dipole transition moment, which depends on the photon energy --- a phenomenon known as Cooper minima. By changing the laser wavelength, the Cooper minima shift, a fact that was used to identify the dissociation pathways. In another project, we studied the carrier-envelope phase (CEP) dependences of highly-excited fragments from hydrogen molecules. General CEP theory predicts a CEP dependence in the total dissociation yield due to the interference of dissociation pathways differing by an even net number of photons, and our measurements are consistent with this prediction. Moreover, we were able to extract the difference in the net number of photons involved in the interfering pathways by using a Fourier analysis. In terms of our experimental method, we have implemented a pump-probe style technique on a thin molecular ion-beam target and explored the feasibility of such experiments. The results presented in this work should lead to a better understanding of the dynamics and control in molecular fragmentation induced by intense laser fields.

Page generated in 0.023 seconds