• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 4
  • Tagged with
  • 36
  • 36
  • 9
  • 8
  • 8
  • 7
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Atomic force microscopy studies of thermal, mechanical and velocity dependent wear of thin polymer films

Rice, Reginald H. January 1900 (has links)
Master of Science / Department of Physics / Robert Szoszkiewicz / Nanoscale modifications of polymer surfaces by scratching them with sharp tips with curvature radii of tens of nanometers and at variable temperatures are expected to provide wealth of information characterizing wear response of these polymers. Such studies are important in the light of understanding the nanoscale behavior of matter for future applications in advanced polymer coatings. This thesis describes how Atomic Force Microscopy (AFM) and hot-tip AFM (HT-AFM) methods were used to characterize thermal and mechanical properties of a 30 nm thick film of poly(styrene-block-ethylene oxide), PS-b-PEO, and modify its lamellar surface patterns. Additionally, it is revealed how contact AFM and HT-AFM methods can efficiently characterize the wear response of two popular polymer surfaces, poly(methyl methacrylate), PMMA, and polystyrene, PS. The AFM and HT-AFM studies on PS-b-PEO copolymer were aimed at producing spatial alignment of respective PS and PEO parts. Instead, however, surface ripples were obtained. These measurements are explained using mode I crack propagation model and stick-and-slip behavior of an AFM tip. In addition, HT-AFM studies allowed extraction of several thermo-physical properties of a PS-b-PEO film at local volumes containing about 30 attograms of a polymer. These thermo-physical quantities are: PEO melting enthalpy of, 111 ± 88 J g[superscript]-1, PS-b-PEO local specific heat of 3.6 ± 2.7 J g[superscript]-1K[superscript]-1, and molecular free energy of Helmholtz of 10[superscript]-20 J nm[superscript]-2 for the PEO within PS-b-PEO. Utilizing a spiral scan pattern at constant angular speed and at various temperatures at the AFM tip-polymer interfaces, the wear response of PS and PMMA polymers was characterized. Cross-sections along the obtained spiral wear patterns provided plots of polymer corrugation as a function of scanning speed. From these studies it was found that the corrugation of the modified polymer surface decays exponentially with linear velocity of the scanning tip.
12

Non-dissociative single-electron ionization of diatomic molecules

Erbsen, Wes Corbin January 1900 (has links)
Master of Science / Department of Physics / Carlos Trallero / Over the past four decades, the single-electron ionization of atoms has been a subject of great interest within the ultra-fast community. While contemporary atomic ionization models tend to agree well with experiment across a wide range of intensities (10[superscript]13-10[superscript]15 W/cm[superscript]2), analogous models for the ionization of molecules are currently lacking in accuracy. The deficiencies present in molecular ionization models constitute a formidable barrier for experimentalists, who wish to model the single-electron ionization dynamics of molecules in intense laser fields. The primary motivation for the work presented in this thesis is to provide a comprehensive data set which can be used to improve existing models for the strong-field ionization of molecules. Our approach is to simultaneously measure the singly-charged ion yield of a diatomic molecule paired with a noble gas atom, both having commensurate ionization potentials. These measurements are taken as a function of the laser intensity, typically spanning two orders of magnitude (10[superscript]13-10[superscript]15 W/cm[superscript]2). By taking the ratio of the molecular to atomic yields as a function of laser intensity, it is possible to "cancel out" systematic errors which are common to both species, e.g. from laser instability, or temperature fluctuations. This technique is very powerful in our ionization studies, as it alludes to the distinct mechanisms leading to the ionization of both molecular and atomic species at the same intensity which are not a function of the experimental conditions. By using the accurate treatments of atomic ionization in tandem with existing molecular ionization models as a benchmark, we can use our experimental ratios to modify existing molecular ionization theories. We hope that the data procured in this thesis will be used in the development of more accurate treatments describing the strong-field ionization of molecules.
13

Estimating the neutron background toward the measurement of neutrino mixing angle [theta][subscript]1[subscript]3 with the Double Chooz detector

Shrestha, Deepak January 1900 (has links)
Doctor of Philosophy / Department of Physics / Glenn Horton-Smith / Double Chooz is a reactor neutrino experiment which has shown evidence of electron anti-neutrino disappearance at 1 km distance. It has been able to exclude the no-oscillation hypothesis at 99.8% CL (2.9ς) with only one detector. From a rate plus spectral shape analysis, the value of sin²2θ₁₃ was found to be 0.109±0.030(stat) ± 0.025(syst). Correlated events mimicking an anti-neutrino event are one of the most important backgrounds for a reactor neutrino experiment like Double Chooz which measured the neutrino mixing angle θ₁₃. Cosmic muons passing through the rock surrounding the detector produce fast neutrons which give rise to correlated events through proton recoil followed by a neutron capture. Muons stopping around the chimney region subsequently decay into Michel electrons also contributing to the correlated background. Measurement of the shape and rate of this background is very important for the precise measurement of θ₁₃. Experimental techniques to estimate of the shape and rate of this background in the Double Chooz far detector are presented in this thesis.
14

Nano-fabrication of cellular force sensors and surface coatings via dendritic solidification

Paneru, Govind January 1900 (has links)
Doctor of Philosophy / Department of Physics / Bret N. Flanders / Directed electrochemical nanowire assembly (DENA) is a method for fabricating nano-structured materials via electrochemical dendritic solidification. This thesis presents two new applications of nano-structured materials that are fabricated via the DENA methodology: cellular force sensors to probe adhesive sites on living cells and single-crystalline metallic dendrites as surface coating materials. Fast migrating cells like D. discoideum, leukocytes, and breast cancer cells migrate by attachment and detachment of discrete adhesive contacts, known as actin foci, to the substrate where the cell transmits traction forces. Despite their importance in migration, the physics by which actin foci bind and release substrates is poorly understood. This gap is largely due to the compositional complexity of actin foci in living cells and to a lack of technique for directly probing these sub-cellular structures. Recent theoretical work predicts these adhesive structures to depend on the density of adhesion receptors in the contact sites, the receptor-substrate potential, and cell-medium surface tension. This thesis describes the fabrication of sub-microscopic force sensors composed of poly(3,4-ethylene dioxythiophene) fibers that can interface directly with sub-cellular targets such as actin foci. The spring constants of these fibers are in the range of 0.07-430 nN m-1. These fibers were used to characterize the strength and lifetime of adhesion between the single adhesive contacts of D. discoideum cells and the fibers, finding an average force of 3.1 ± 2.7 nN and lifetime of 23.4 ± 18.5 s. This capability is significant because direct measurement of these properties will be necessary to measure the cell-medium surface tension and to characterize the receptor-substrate potential in the next (future) stage of this project. The fabrication of smart materials that are capable of the high dynamic range structural reconfiguration would lead to their use to confer hydrophobic, lipophobic, and anti-corrosive character to substrates in a regenerative manner. As a step towards this goal, we have extended the DENA method to enable repetitive growth and dissolution of metallic dendrites to substrates. The experimental parameters that control this process are the frequency and duty cycle of the alternating voltage signal that initiates the dendritic growth.
15

Watt-class continuous wave Er3+/Yb3+ fiber amplifier

Ebbeni, May January 1900 (has links)
Master of Science / Department of Physics / Brian R. Washburn / Rare-earth doped optical fibers can be used to make optical amplifiers in the near infrared with large optical gain in an all fiber based system. Indeed, erbium doped fibers made gain possible within the 1532 to 1560 nm band which makes long span fiber optical communication systems a possibility. Erbium doped fibers have also been used to make narrow linewidth or mode-locked lasers. Other rare-earth doped fibers can be used for amplifiers in other near-infrared spectral regions. Recently, fiber amplifier technology has been pushed to produce watt level outputs for high power applications such as laser machining. These high power amplifiers make new experiments in ultrafast fiber optics a possibility. This report reviews the current literature on Watt-class continuous wave erbium doped amplifiers and discussed our attempt to develop a high power Yb/Er amplifier. After the design of the cladding pump in 1999, the world’s first single mode fiber laser with a power greater than 100 Watts of the continuous wave light was introduced. After 2002 there was a huge spike in the output powers (up to 2 kW) of lasers based on rare-earth doped fibers. Our own work involved developing a 10 W amplifier at 1532 nm and 1560 nm. A high power amplifier was made by seeding a dual-clad Yb/Er co-doped fiber pumped at 925 nm using a lower power erbium doped fiber amplifier. We will discuss the design and construction of the amplifier, including the technical difficulties for making such an amplifier.
16

The pathway active learning environment: an interactive web-based tool for physics education

Nakamura, Christopher Matthew January 1900 (has links)
Doctor of Philosophy / Department of Curriculum and Instruction / Dean A. Zollman / The work described here represents an effort to design, construct, and test an interactive online multimedia learning environment that can provide physics instruction to students in their homes. The system was designed with one-on-one human tutoring in mind as the mode of instruction. The system uses an original combination of a video-based tutor that incorporates natural language processing video-centered lessons and additional illustrative multimedia. Our Synthetic Interview (SI) tutor provides pre-recorded video answers from expert physics instructors in response to students’ typed natural language questions. Our lessons cover Newton’s laws and provide a context for the tutoring interaction to occur, connect physics ideas to real-world behavior of mechanical systems, and allow for quantitative testing of physics. Additional multimedia can be used to supplement the SI tutors’ explanations and illustrate the physics of interest. The system is targeted at students of algebra-based and concept-based physics at the college and high school level. The system logs queries to the SI tutor, responses to lesson questions and several other interactions with the system, tagging those interactions with a username and timestamp. We have provided several groups of students with access to our system under several different conditions ranging from the controlled conditions of our interview facility to the naturalistic conditions of use at home. In total nearly two-hundred students have accessed the system. To gain insight into the ways students might use the system and understand the utility of its various components we analyzed qualitative interview data collected with 22 algebra-based physics students who worked with our system in our interview facility. We also performed a descriptive analysis of data from the system’s log of user interactions. Finally we explored the use of machine learning to explore the possibility of using automated assessment to augment the interactive capabilities of the system as well as to identify productive and unproductive use patterns. This work establishes a proof-of-concept level demonstration of the feasibility of deploying this type of system. The impact of this work and the possibility of future research efforts are discussed in the context of Internet technologies that are changing rapidly.
17

Graphene nanosheets produced via controlled detonation of hydrocarbons

Nepal, Arjun January 1900 (has links)
Doctor of Philosophy / Physics / Christopher M. Sorensen / We demonstrated that gram quantities of pristine graphene nanosheets (GNs) can be produced via detonation of a hydrocarbon. This one-step and catalyst-free method is eco-friendly and economical for the production of GNs. The hydrocarbons detonated were C₂H₂, C₂H₄, C₃H₈ and CH₄ in the presence of O₂. The carbon products obtained from the detonation were analyzed by XRD, TEM, XPS and Raman spectroscopy. Depending upon the ratio of O₂ to C₂H₂, the GNs of size up to ~ 250 nm, SSA up to ~ 200 m²/g and yield up to 70% with 2-3 layers' stack have been obtained so far. N₂O was determined as a good alternative to O₂ as an oxidizer to produce GNs by detonating C₂H₂ with it. A two-color pyrometer was designed and calibrated to measure the temperature of the detonation of hydrocarbons. The measured detonation temperatures were in between 2700 K and 4300 K. Along with the high detonation temperature, the composition of precursor hydrocarbon was observed to be crucial as well to determine its suitability to detonate with oxidizer to produce GNs. The hydrocarbons C₂H₂ and C₂H₄ were determined as the suitable precursors to produce GNs whereas detonation of C₃H₈ yields mere amorphous carbon soot and CH₄ gives no solid carbon while detonated with O₂. It has been proposed that the hydrocarbons with C/H≥0.5 are suitable for GNs production by detonation method. Highly oxidized graphene nanosheets (OGNs) were produced by solution-based oxidation of GNs prepared via a controlled detonation of acetylene at O₂/C₂H₂=0.8. The produced OGNs were about 250 nm in size and hydrophilic in nature. The C/O ratio was dramatically reduced from 49:1 in the pristine GNs to about 1:1 in OGNs, as determined by X-ray photoelectron spectroscopy. This C/O in OGNs is the least ever found in all oxidized graphitic materials that have been reported. Thus, the OGNs produced from the detonated GNs with such high degree of oxidation herein yields a novel and promising material for future applications.
18

Influence of visual cueing and outcome feedback on physics problem solving and visual attention

Rouinfar, Amy January 1900 (has links)
Doctor of Philosophy / Department of Physics / N. Sanjay Rebello / Research has demonstrated that attentional cues overlaid on diagrams and animations can help students attend to the relevant areas and facilitate problem solving. In this study we investigate the influence of visual cues and outcome feedback on students’ problem solving, performance, reasoning, and visual attention as they solve conceptual physics problems containing a diagram. The participants (N=90) were enrolled in an algebra-based physics course and were individually interviewed. During each interview students solved four problem sets while their eye movements were recorded. The problem diagrams contained regions that were relevant to solving the problem correctly and separate regions related to common incorrect responses. Each problem set contained an initial problem, six isomorphic training problems, and a transfer problem. Those in the cued condition saw visual cues overlaid on the training problems. Those in the feedback conditions were told if their responses (answer and explanation) were correct or incorrect. Students’ verbal responses were used to determine their accuracy. The study produced two major findings. First, short duration visual cues coupled with correctness feedback can improve problem solving performance on a variety of insight physics problems, including transfer problems not sharing the surface features of the training problems, but instead sharing the underlying solution path. Thus, visual cues can facilitate re-representing a problem and overcoming impasse, enabling a correct solution. Importantly, these cueing effects on problem solving did not involve the solvers’ attention necessarily embodying the solution to the problem. Instead, the cueing effects were caused by solvers attending to and integrating relevant information in the problems into a solution path. Second, these short duration visual cues when administered repeatedly over multiple training problems resulted in participants becoming more efficient at extracting the relevant information on the transfer problem, showing that such cues can improve the automaticity with which solvers extract relevant information from a problem. Both of these results converge on the conclusion that lower-order visual processes driven by attentional cues can influence higher-order cognitive processes associated with problem solving.
19

Optical frequency references in acetylene-filled hollow-core optical fiber and photonic microcells

Wang, Chenchen January 1900 (has links)
Doctor of Philosophy / Department of Physics / Kristan L. Corwin / Optical frequency references have been widely used in applications such as navigation, remote sensing, and telecommunication industry. For stable frequency references in the near-infrared (NIR), lasers can be locked to narrow absorption features in gases such as acetylene. Currently, most Near NIR references are realized in free space setups. In this thesis, a low-loss hollow-core optical fiber with a diameter of sub millimeters is integrated into the reference setup to provide long interaction lengths between the filling gas and the laser field, also facilitate the optical interaction with low power levels. To make portable NIR reference, gas can be sealed inside the hollow-core fiber, by creating a photonic microcell. This work has demonstrated all-fiber optical frequency references in the Near IR by fabricating and integrating gas sealed photonic microcells in the reference setup. Also, a thoughtful study regarding the lineshape of the fiber-based reference has been accomplished. According the proper modeling of a shift due to lineshape, a correction was applied to our previous absolute frequency measurement of an NIR optical frequency reference. Furthermore, effects of the hollow-core fibers, including mode-dependence frequency shift related to surface modes are explored. In addition, angle splicing techniques, which will improve the performance of the fiber-based frequency reference have been created. Low transmission and return loss angle splices of photonic bandgap fiber, single mode PCF, and large core kagome to SMF-28 are developed and those fibers are demonstrated to be promising for photonic microcell based optical frequency references. Finally, a potentially portable optical metrology system is demonstrated by stabilizing a fiber-laser based frequency comb to an acetylene-filled optical fiber frequency reference. Further work is necessary to fabricate an all-fiber portable optical metrology system with high optical transmission and low molecular contamination.
20

Characterization of the mid-infrared wavelength dependent loss in hollow core photonic crystal fibers

Harner, Mary January 1900 (has links)
Master of Science / Department of Physics / Brian Washburn / This research sought to characterize the length dependent loss of hollow core photonic crystal fibers (HC-PCF) in the mid-infrared. These fibers are used in gas-filled fiber lasers that operate in the mid-infrared range. A black body source which provided a broad mid-infrared spectrum was coupled into a HC-PCF and a fiber cut-back method was implemented to make the length dependent loss measurement. A monochromator was used to observe narrow bands of the broad spectrum provided by the black body source and the loss as a function of wavelength was constructed. The loss for four unique HC-PCF fibers was characterized across the wavelength range [lambda] =1754 nm to [lambda] =3220 nm. The best fibers demonstrated a loss of less than 2 dB/m across this range, with some fibers even exhibiting loss below 1 dB/m.

Page generated in 0.0615 seconds