• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The role of the histone methyl-transferase, set1, in variable gene expression and cell type proportioning in D. discoideum

Salvidge, William January 2018 (has links)
During multicellular development, cells must make fate decisions that reproducibly generate the correct cell type proportions. It is remarkable that in certain developmental scenarios, seemingly identical cells in a homogenous environment can achieve this. It is thought that this is possible because cell populations exhibit reproducible cell-cell variation in gene expression. How these differences are generated has been intensely studied over the past decade, with transcriptional bursting emerging as an important factor for driving variability between cells. Furthermore, it is thought that chromatin structure around gene promoters is a key regulator of transcriptional bursting. However, key questions remain. What factors regulate chromatin structure at the molecular level? Is the activity of chromatin regulators governed by random processes or entrained by one of many hidden factors such as cell cycle positioning, cell volume, metabolism? Are the proportions of cells exhibiting different bursting patterns regulated to ensure normal cell fate choice and proportioning? To address these questions, we have investigated whether different regulators of chromatin structure affect the pre-stalk/pre-spore fate decision in the social amoebae D. discoideum. We have identified that set1, a methyl-transferase responsible for generating methylation on histone 3 at position lysine 4 (H3K4me), plays a key role in controlling the balance of cell types in multicellular development as in its absence cells become autonomously primed towards a pre-stalk fate. Single cell RNA-sequencing has revealed that genes normally regulated by this modification represent a specific class of hyper-variable genes. We find that this variability is generated by specific set1 dependent repression at these loci, as upon deletion of this enzyme we see an active recruitment of more cells to an expressing state. Our data suggest that set1 activity itself is controlled by the external source of the cell cycle. This cell cycle dependent regulation robustly ensures the correct proportions of cells within the population contain levels of set1 activity that prime 25% of cells towards the pre-stalk lineage and the other 75% to the pre-spore fate. As such we believe our study reveals a novel mechanism linking specific regulation of transcriptional bursting through the activity of set1 to cell fate propensity.
2

Cyclic AMP regulations of gene expression during development of Dictyostelium discoideum

Ramji, Dipak Purshottam January 1988 (has links)
No description available.
3

Nano-fabrication of cellular force sensors and surface coatings via dendritic solidification

Paneru, Govind January 1900 (has links)
Doctor of Philosophy / Department of Physics / Bret N. Flanders / Directed electrochemical nanowire assembly (DENA) is a method for fabricating nano-structured materials via electrochemical dendritic solidification. This thesis presents two new applications of nano-structured materials that are fabricated via the DENA methodology: cellular force sensors to probe adhesive sites on living cells and single-crystalline metallic dendrites as surface coating materials. Fast migrating cells like D. discoideum, leukocytes, and breast cancer cells migrate by attachment and detachment of discrete adhesive contacts, known as actin foci, to the substrate where the cell transmits traction forces. Despite their importance in migration, the physics by which actin foci bind and release substrates is poorly understood. This gap is largely due to the compositional complexity of actin foci in living cells and to a lack of technique for directly probing these sub-cellular structures. Recent theoretical work predicts these adhesive structures to depend on the density of adhesion receptors in the contact sites, the receptor-substrate potential, and cell-medium surface tension. This thesis describes the fabrication of sub-microscopic force sensors composed of poly(3,4-ethylene dioxythiophene) fibers that can interface directly with sub-cellular targets such as actin foci. The spring constants of these fibers are in the range of 0.07-430 nN m-1. These fibers were used to characterize the strength and lifetime of adhesion between the single adhesive contacts of D. discoideum cells and the fibers, finding an average force of 3.1 ± 2.7 nN and lifetime of 23.4 ± 18.5 s. This capability is significant because direct measurement of these properties will be necessary to measure the cell-medium surface tension and to characterize the receptor-substrate potential in the next (future) stage of this project. The fabrication of smart materials that are capable of the high dynamic range structural reconfiguration would lead to their use to confer hydrophobic, lipophobic, and anti-corrosive character to substrates in a regenerative manner. As a step towards this goal, we have extended the DENA method to enable repetitive growth and dissolution of metallic dendrites to substrates. The experimental parameters that control this process are the frequency and duty cycle of the alternating voltage signal that initiates the dendritic growth.
4

Understanding Heat Shock Protein 90 Biology And Exploring Its Potential As A Target Against Neglected Protozoan Diseases

Roy, Nainita 07 1900 (has links) (PDF)
Cells invest a lot of energy in order to get their proteins to fold correctly and attain functionality. It is the functional proteome of a cell that defines the ‘life of a cell’. Cells have therefore employed dedicated machinery called chaperones to enable protein folding. One class of these chaperones is heat shock proteins named so because they were initially discovered to be heat inducible and particularly important during heat stress. However the role of heat shock proteins has now been extended from merely being important for stress tolerance. Heat shock proteins are prominently involved in maintaining the correct folding and conformation of proteins and are vital in regulating the stability between protein synthesis and degradation. One of the heat shock proteins, Hsp90, is an evolutionarily conserved molecular chaperone essential in all known eukaryotes examined so far. Unlike other chaperones, Hsp90 is unique in binding to substrate proteins, which are at a late stage of folding, poised for activation by either ligand binding or interaction with other cellular factors. The most common clients of Hsp90 are signaling proteins, the classic example being steroid hormone receptors and signaling kinases. Several other proteins including transcription factors, proteins involved in cell division and development have also been shown to rely on Hsp90 functioning for their maturation. Hsp90 has emerged as an important molecular chaperone due to the large number of proteins that depend on the activity of Hsp90 for their functionality. Hsp90 plays a central role in multiple cellular processes. Since knock-out of hsp90 is lethal to most eukaryotes, inhibitors of Hsp90 have been widely used to study its function. The most widely used inhibitor is geldanamycin (GA). GA binds to the N-terminal/ATP binding site of Hsp90 which results in the degradation of client proteins. Hsp90 clients have been shown to be proteins important for diverse cellular processes such as protein trafficking, signal transduction, cell-cycle, cellular motility and development in eukaryotes. Exploring new Hsp90 clients gives an insight into more pathways that Hsp90 regulates. Intriguingly, many proteins interact with Hsp90 in a context dependent manner, i.e., under certain environmental cue, or in a particular tissue, or only under certain diseased states. It is therefore essential to study Hsp90 functioning and examine Hsp90-client interactions in more than one model organism. Dictyostelium discoideum: a model organism to study the role of Hsp90 in development The eukaryote, Saccharomyces cerevisiae that has been explored extensively for studying the diverse clientele of Hsp90, lacks various signaling pathways important for growth and differentiation as prevalent in higher eukaryotes. It is desirable to develop a model system that would combine the advantages of a lower eukaryote, in terms of its ease of manipulation and retain the complexities of higher eukaryotes. With this motivation, the social slime mold D. discoideum was explored to examine potential roles of cytoplasmic Hsp90 in growth and development. D. discoideum is ideal for studying signaling pathways important for growth and differentiation and to understand how these pathways control cellular responses to external stimuli. Multicellular development in D. discoideum occurs in response to starvation induced stress. As in case of many other protozoans, we conjectured that Hsp90 may participate in regulating developmental transition from unicellular to multicellular stages in Dictyostelium as well. My initial study attempts, to address the role of Hsp90 (HspD), in development of D. discoideum. Towards this two approaches were taken: through genetic interference of HspD, and the other, through its pharmacological inhibition. An antisense HspD plasmid was designed which upon transfection in D. discoideum, showed a very slow growth phenotype, and the cells did not survive beyond few generations. Therefore to further study the functions of HspD, I resorted to pharmacological inhibition by using the specific, well characterized inhibitor, GA. As a first step towards this I examined whether GA was capable of binding to HspD from D. discoideum cell lysate. Towards this, GA was immobilized to NHS-sepharose beads, and bound proteins were examined. Western blot of the bound fraction, using antibody specific to HspD, identified it as a predominant protein being pulled down. This was further confirmed by mass spectrometry. To be able to compare Hsp90 from D. discoideum with Hsp90s from other model organisms, HspD was cloned, purified and biochemically characterized. Comparison of ATPase activities of HspD with Hsp90’s from other systems indicates HspD to possess a relatively low ATPase activity with a Kcat of 1.6 x 10-3 min-1. The dissociation constant of GA for HspD was found to be 0.8 µM, which was in the range similar to Hsp90s from other systems. In addition, we have now obtained structural data on HspD in collaboration with crystallography groups. The N-terminal domain of HspD has been crystallized, both in -free and ligand-bound forms. Crystal structure comparison of HspD with Hsp90 from S. cerevisiae shows overall fold similarity yet some important differences in side chain orientations of specific residues in the ATP binding domain. Interestingly, on treating D. discoideum cells with GA or another Hsp90 N-terminal inhibitor, Radicicol, it was found that, while control cells progressed to develop into fruiting bodies, GA/Radicicol treated cells resulted in delayed development, and were finally arrested at the ‘mound’ stage. This suggested potential involvement of HspD in developmental progression beyond the mound stage. In order to identify the pathways that are probably affected by HspD in D. discoideum development, cells were treated with/without GA and subjected to comparative proteomics using mass spectrometric analysis. Amongst other differences, there was an obvious absence of peptides corresponding to the protein paxillin in GA treated cells. The results were verified by Western blot analysis, using a specific antibody against paxillin, wherein a drastic decrease in paxillin levels were observed in cells treated with GA. Paxillin is a key player in focal adhesion sites that functions as an adaptor protein to recruit diverse cytoskeletal and signaling proteins into a complex, and is essential for cellular proliferation and cell-substrate adhesion. My studies suggest that one of the pathways through which HspD regulates development is through cellular motility as Hsp90 was involved in regulating proteins necessary for motility and cytoskeletal organization at focal adhesion points during development in D. discoideum. Hsp90 as a target for Trypanosoma evansi infections In addition to examining the role of Hsp90 in differentiation in D. discoideum, I have also looked at the potential of Hsp90 under diseased conditions. Towards this, I explored the protozoan parasite, T. evansi, which causes a fatal disease ‘surra’. Surra is a neglected disease that mainly affects domestic and wild animals including equines, camels, cattle and buffaloes. The parasite causes significant economic losses to livestock industry. While this infection is mainly restricted to domestic (camels, equines, cattle, buffaloes, goats, sheep, pigs, dogs etc.) and wild animals, recent reports indicate their ability to infect humans. There are no reliable sensitive and specific diagnostic tests or vaccines available against this disease and the available drugs show significant toxicity. There is an urgent need to develop improved methods of diagnosis and control measures for this disease. Unlike its related human parasites T. brucei and T. cruzi whose genomes have been fully sequenced T. evansi genome sequence remains unavailable. With a view to identifying potential diagnostic markers and drug targets I have studied the clinical proteome of T. evansi infection using mass spectrometry. I have been able to identify almost 166 proteins of T. evansi, which also included potential drug and vaccine targets. Due to absence of any genome sequence information from T. evansi, most of the peptides obtained matched to its related species, T. brucei, T. cruzi and also few from Leishmania major. Importantly, I was also able to identify peptides from Hsp90. Hsp90 from T. evansi was cloned and its sequence was also obtained. To investigate the possibility of exploring Hsp90 as a target against Surra infections, TeHsp90 protein was purified by expressing it in bacterial cells, and its drug (GA) binding ability was examined in-vitro. The dissociation constant of GA for HspD was found to be 1.4 µM, which was in the range similar to Hsp90s from other systems. The ability of 17AAG (a derivative of GA) was examined in inhibiting T. evansi infection at pre-clinical level. Towards this, swiss female mice were infected with purified parasites and then the drug was injected either immediately, in one group of mice, and in another group of mice the parasites were challenged with the drug only after the onset of infection. Interestingly, both groups of mice were found to get cured using Hsp90 inhibitor. The pre-clinical results suggested that Hsp90 was an interesting drug target and its inhibitor could indeed be used against ‘surra’ infections. Hsp90 from Giardia lamblia: An unusual case Hsp90 was also examined from another pathogenic protozoan, Giardia lamblia, one of the leading causes of diarrhea in the world. Previous studies from our lab have shown Gardial Hsp90 to be coded by two different ORFs, spliced together in trans. This is indeed the only example of trans-splicing in Hsp90 known so far. My study further characterizes this finding through analysis of transcription levels of the individual ORFs, using Northern blot analysis. Importantly, I was able to detect transcripts of all three forms of Hsp90; full-length, N terminus as well as C terminus, suggesting that these are expressed and may have biological significance. To understand the significance of these independent transcripts, I have examined relative levels of expression of all three forms by Real-time PCR analysis wherein there was almost 90 fold and 5 fold lesser transcript level of N terminus and C terminus Hsp90 observed, respectively as compared to the full-length GlHsp90 expression. Previous reports have shown Hsp90 from all known organisms, to get up regulated during heat shock. Thus it was important to examine the effect of heat stress on the expression of these independent transcripts. Interestingly, different domains were found to get independently induced during heat stress. The transcript level of HspC was seen to be almost similar to that of full-length upon heat shock. There was also a significant up regulation observed in HspN transcript upon heat shock. Taking together all these observations, these results suggest a possible role for the independent domains, HspN and HspC during heat stress in G. lamblia. Furthermore, I have cloned and purified one of the individually expressed domains, HspN and characterized it biochemically. HspN was found to be able to bind to ATP, however lacked ATPase activity. Taking together all these observations, it suggests a possible role for the independent domains, HspN and HspC which needs to be investigated further. Summary Altogether, my studies establish the importance of alternate model systems in understanding the biology of Hsp90. The importance of Hsp90 was first established in growth and development of a nonpathogenic protozoan D. discoideum. My results provide significant insights into the additional pathways that Hsp90 regulates during D. discoideum development. One such important pathway was delineated to be cellular locomotion and motility. Further, I have also studied the importance of Hsp90 in neglected infectious diseases. In addition to providing a glimpse into the pathways operational during disease manifestation in T. evansi, we have shown Hsp90 to be effective in pre-clinical trials against T. evansi infections. Hsp90 from another pathogenic protozoan, G. lamblia, has also been studied. This is by far the only organism, in which there is an independent expression of the N-and C-terminal domain of Hsp90. The rare gene organization, coupled with independent expression of domains of Hsp90, makes this organism important to examine novel functions of this chaperone.
5

Epigenetic Regulators Of Development In The Social Amoeba Dictyostellium Discoideum : The Roles Played By Histone Deacetylases And Heat Shock Protein 90

Sawarkar, Ritwick 07 1900 (has links)
The major evolutionary transition from single-celled to multicellular life is believed to have occurred independently of the main metazoan lineages in the cellular slime moulds, of which Dictyostelium discoideum is the best-studied species. Unusually, in this case multicellular development is a facultative trait and part of an asexual life cycle. It is triggered by starvation and involves aggregation of hitherto independent and possibly unrelated free-living cells. The consequences of multicellularity in D.discoideum are strongly influenced by the environment and meaningful external perturbations are easily carried out. This makes the organism ideally suited to a study of epigenetic factors that regulate development. In an attempt to understand how conserved epigenetic pathways are integrated within the developmental framework, two likely players were chosen for investigation - heat shock protein 90 (Hsp90) and histone deacetylases (HDACs). Hsp90 has been implicated in diverse biological processes such as protein folding, cell cycle control, signal transduction, and morphological evolution. The role of Hsp90 in D.discoideum life cycle was studied using a specific inhibitor, geldanamycin. Inhibition of Hsp90 function in D.discoideum caused a delay in aggregation and an arrest of development at the ‘mound’ stage. A reduction in Hsp90activity in starving cells of D.discoideum resulted in the generation of a range of phenotypes. The study suggests that Hsp90 is required for a specific developmental transition of the social amoeba and is important in generating a reliable outcome of the developmental process. Histone acetylation regulates gene expression and leads to the establishment and maintenance of cellular phenotypes during development of plants and animals. To study the roles of HDACs in D.discoideum, biochemical, pharmacological and genetic approaches were employed. The inhibition of HDAC activity by trichostatin A resulted in histone hyperacetylation and a delay in cell aggregation and differentiation. Cyclic AMP oscillations were normal in starved amoebae treated with trichostatin A but the expression of a subset of cAMP-regulated genes was delayed. Bioinformatic analysis indicated that there are four genes encoding putative HDACs in D.discoideum. One of these four genes, hdaB, was found to be dispensable for growth and development under laboratory conditions; but formed spores with lower efficiency than the wild type in chimeras. The work shows that HDAC activity is important for regulating two aspects of multicellular development: (a) heterochrony, namely the relative timing of developmental events, and (b) modulating the behaviour of single cells in a manner that is sensitive to their social environment.
6

Funktionelle Rekonstitution von Connexonen in artifizielle Membranen: Expression, Reinigung und Charakterisierung von Connexin 43 / Functional reconstitution of connexons in artificial membranes: expression, purification and characterization of connexin 43

Carnarius, Christian 11 June 2012 (has links)
No description available.
7

Structural Studies on Heat Shock Protein 90 from Dictyostelium Discoideum and Oryza Sativa

Raman, Swetha January 2014 (has links) (PDF)
Molecular chaperones are proteins that interact with and aid in stabilization and activation of other proteins. Chaperones help proteins attain their three dimensional conformation, without forming a part of the final structure. Many of the chaperones are stress proteins known as Heat shock proteins (Hsps). Their expression is upregulated in response to various kinds of stress such as heat stress, oxidative stress etc., which threaten the protein homeostasis, by structurally destabilizing cellular proteins, and increasing the concentration of aggregation-prone folding intermediates. The Hsps are classified according to their molecular weight into Hsp40, Hsp60, Hsp70, Hsp90, Hsp100, and the small Hsp families. Some of them are constitutively expressed and play a fundamental role in de novo protein folding. They further aid in proteome maintenance by assisting in oligomeric assembly, protein trafficking, refolding of stress denatured protein, preventing protein aggregation and protein degradation. Heat shock protein 90 (Hsp90) are one of the important representatives of this class of proteins. Hsp90 are highly conserved class of molecular chaperones. They are found in bacteria, eukaryotes, but not in archaea. In contrast to the eukaryotes which require a functional cytoplasmic Hsp90 for viability, the bacterial counterpart (HtpG) is typically nonessential. Hsp90 is an ATP dependent chaperone. Hsp90 form dimers, with each protomer consisting of three functional domains: N- terminal, ATP binding domain, Middle domain and C-terminal domain. Hsp90 is a dynamic protein, and undergoes an elaborate conformational cycle during its ATPase cycle, which is essential for its chaperoning activity. The Hsp90 chaperone cycle is regulated by interaction with diverse cochaperones. Hsp90 interacts with specific set of substrate proteins. Many of these substrate proteins function at the heart of several cellular processes like signalling, cell cycle, apoptosis. Studies from protozoans like Leishmania, Plasmodium, Trypanosoma etc. have also implicated the role of Hsp90 in their growth and stage transitions. Thus, selective inhibition of Hsp90 has been explored as an intervention strategy against important human diseases such as cancer, malaria and other protozoan diseases. The ATP binding N-terminal domain (NTD), has been explored as the target domain for inhibition of Hsp90 using competitive inhibitors of ATP. Several chemical classes of Hsp90 inhibitors are known, including ansamycins, macrolides, purines, pyrazoles, and coumarin antibiotics. However, many inhibitors are observed to be toxic, less soluble and unstable. Hence, there is a requirement for new approach to design inhibitors which are more soluble and less toxic and serve as effective therapeutic drugs.inhibitors are observed to be toxic, less soluble and unstable. Hence, there is a requirement for new approach to design inhibitors which are more soluble and less toxic and serve as effective therapeutic drugs. The work presented in this thesis mainly concerns with the structural studies and biochemical and biophysical characterization of Hsp90 from two different sources viz. Dictyostelium discoideum, a cellular slime mould and a plant source Oryza sativa (rice). The structural analyses of these two proteins have been carried out by X-ray crystallography. Though yeast has been explored extensively as a model system to understand the different roles of Hsp90, it lacks the various signalling pathways essential for growth and development present in case of higher eukaryotes. D. discoideum has been employed as a model system to understand multicellular development, which occurs in response to starvation induced stress. D. discoideum has the advantages due to its ease of manipulation. The organism's genome also shows many signalling pathway for growth and differentiation that are conserved between D. discoideum and mammals. With this motivation, we have studied several structural aspects of the cytosolic isoform of Hsp90 from D. discoideum called HspD. HspD was also observed to play a role in the multicellular development of D. discoideum. It has been demonstrated that the treatment of D. discoideum with inhibitors like Geldanamycin or Radicicol causes an arrest in the multicellular development at the mound stage, and the few which escaped this arrest gave rise to abnormal fruiting bodies. A subset of the proteins involved in this mound arrest phenotype, were observed to have homologs in humans, which are clients of Hsp90. Therefore, a structural perspective of HspD can aid in better understanding of the role of this protein in the organism, as well as, elucidate any structural differences observed as compared to other species, which may have an impact on its activity. Studies on the physiological role of Hsp90 in plants began much later as compared to fungi and humans. In plants Hsp90 are involved in various abiotic stress responses. In addition, their roles have also been implicated in plant growth and development, innate immune response and buffering genetic variations. However, the molecular mechanisms of these various actions are not clearly understood. Also, the structural aspects of plant Hsp90 are yet to be explored. The structure of the NTD of Hsp90 from barley is the only one available from a plant source till now. We have initiated the studies on rice Hsp90 with the objective to understand the mechanism of Hsp90 in plants, which may aid in improving stress tolerance in plants. The thesis has been divided into five chapters. The first chapter introduces the various aspects of Hsp90 protein. The chapter starts with a general overview of concept of molecular chaperones and describes briefly the different classes of molecular chaperones. This is followed by a detailed description of different aspects of Hsp90 with main emphasis on the structure and its conformational flexibility. The chapter describes the association of Hsp90 with other accessory proteins like cochaperones and its interaction with its substrate proteins and explains the functional significance of Hsp90 as a drug target and the need for the development of new class of inhibitors, followed by the significance of the study of Hsp90 in the two model systems (D. discoideum and rice) chosen to be studied. The second chapter gives a brief overview of the principles behind the different experimental methods employed during the course of this research, which includes the tools of X-ray crystallography and other biochemical and biophysical techniques employed for the characterization of the protein. Chapter 3 describes the crystal structure of NTD of Hsp90 from D. discoideum. The structure of NTD was solved in two different native (ligand-free) forms viz. monoclinic and hexagonal. The two forms differed in local structural rearrangement of a segment of NTD known as the lid region. The lid region in the hexagonal form showed a shift in its position as compared to the other solved structures of NTD. The structure of NTD was also solved in complex with various ligands which include ADP, substrate analogs and an inhibitor molecule. A comparison of all the structures showed that the overall structure is well-conserved. One of the crystal structures of NTD showed a heptapeptide (part of the vector) bound at the active site. The peptide was observed to make several complementary interactions with the residues of the ATP binding pocket and retain several interactions which the nucleotide makes with the NTD. The NTD showed subtle conformational differences when compared with the NTD of Hsp90 from yeast. Chapter 4 details the structural and functional characteristics of full length Hsp90 protein from D. discoideum. Due to the large size and flexibility, the full length protein did not crystallize in spite of several attempts. Hence, HspD was studied using different solution studies like Small Angle X-ray Scattering (SAXS) and Dynamic Light Scattering (DLS). Both the studies showed the presence of higher oligomers. The SAXS data showed the presence of tetramers and hexamers while, the addition of the ligand shifts the protein from a dimer to a higher oligomer as observed from DLS studies. The chapter also describes the study of interaction of HspD with a cochaperone protein p23. The interactions were studied using ITC, which showed a strong binding. The ATPase activity was also evaluated in the presence of increasing concentrations of p23, which was observed to decline with increasing concentrations of p23. In chapter 5, we describe the biochemical characterization of Hsp90 from Oryza sativa (rice) and the crystallographic analysis of its NTD. Binding of the rice Hsp90 to ATP and an inhibitor were studied by fluorescence. The ATPase activity of rice Hsp90 was checked by radioactive assay and the protein was observed to be active. The NTD of rice Hsp90 crystallized as a monomer in complex with a substrate analog AMPPCP and the structure was determined.

Page generated in 0.0378 seconds