• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 82
  • 66
  • 10
  • 8
  • 7
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 230
  • 230
  • 53
  • 47
  • 36
  • 30
  • 29
  • 25
  • 24
  • 24
  • 20
  • 18
  • 18
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Human Enteropeptidase Light Chain: Bioengineering of Recombinants and Kinetic Investigations of Structure and Function

Smith, Eliot T., Johnson, David A. 01 May 2013 (has links)
The serine protease enteropeptidase exhibits a high level of substrate specificity for the cleavage sequence DDDDK∼ X, making this enzyme a useful tool for the separation of recombinant protein fusion domains. In an effort to improve the utility of enteropeptidase for processing fusion proteins and to better understand its structure and function, two substitution variants of human enteropeptidase, designated R96Q and Y174R, were created and produced as active (>92%) enzymes secreted by Pichia pastoris with yields in excess of 1.7 mg/Liter. The Y174R variant showed improved specificities for substrates containing the sequences DDDDK (kcat/KM=6.83 × 106 M-1 sec-1) and DDDDR (kcat/ KM=1.89 × 107 M-1 sec-1) relative to all other enteropeptidase variants reported to date. BPTI inhibition of Y174R was significantly decreased. Kinetic data demonstrate the important contribution of the positively charged residue 96 to extended substrate specificity in human enteropeptidase. Modeling shows the importance of the charge-charge interactions in the extended substrate binding pocket.
172

Expression of Recombinant Human Mast Cell Chymase With Asn-Linked Glycans in Glycoengineered Pichia Pastoris

Smith, Eliot T., Perry, Evan T., Sears, Megan B., Johnson, David A. 01 January 2014 (has links)
Recombinant human mast cell chymase (rhChymase) was expressed in secreted form as an active enzyme in the SuperMan5 strain of GlycoSwitch® Pichia pastoris, which is engineered to produce proteins with (Man) 5(GlcNAc)2 Asn-linked glycans. Cation exchange and heparin affinity chromatography yielded 5 mg of active rhChymase per liter of fermentation medium. Purified rhChymase migrated on SDS-PAGE as a single band of 30 kDa and treatment with peptide N-glycosidase F decreased this to 25 kDa, consistent with the established properties of native human chymase (hChymase). Polyclonal antibodies against hChymase detected rhChymase by Western blot. Active site titration with Eglin C, a potent chymase inhibitor, quantified the concentration of purified active enzyme. Kinetic analyses with succinyl-Ala-Ala-Pro-Phe (suc-AAPF) p-nitroanilide and thiobenzyl ester synthetic substrates showed that heparin significantly reduced KM, whereas heparin effects on kcat were minor. Pure rhChymase with Asn-linked glycans closely resembles hChymase. This bioengineering approach avoided hyperglycosylation and provides a source of active rhChymase for other studies as well as a foundation for production of recombinant enzyme with human glycosylation patterns.
173

Recombinant Human Mast-Cell Chymase: An Improved Procedure for Expression in Pichia Pastoris and Purification of the Highly Active Enzyme

Lockhart, Brent E., Vencill, Jessica R., Felix, Cherise M., Johnson, David A. 01 February 2005 (has links)
Human mast-cell chymase (EC 3.4.21.39) is a chymotrypsin-like serine protease that is stored in and released from mast-cell granules. This enzyme has been expressed in Pichia pastoris by homologous recombination of the cDNA coding for the mature active chymase into the Pichia genome. Cells producing the highest levels of recombinant human chymase were selected by activity screening and they were grown in a fermentor. Methanol induction resulted in the secretion of active chymase into the Pichia growth media and increasing levels of enzyme were detected in the media for 5 days. Active enzyme was purified from the culture media with a 22 % yield of activity by a simple two-step procedure involving hydrophobic-interaction chromatography followed by affinity chromatography on immobilized heparin. The major peak from the heparin column contained a single band of 30.6 kDa on SDS/PAGE. The purified recombinant human chymase was 96% active and the yield was 2.2 mg/l of growth media.
174

Identification and characterization of components that overcome secretion limitations of the yeast Pichia pastoris

Campos, Katherine Helen de Sa 01 January 2013 (has links)
The methylotrophic yeast. Pichia pastoris, is a powerful, adaptable, and inexpensive recombinant expression system commonly used to secrete heterologous protein. Although P. pastoris is a popular host organism, secretion inefficiency continues to be a major hurdle in its ability to produce high levels of foreign protein. Optimization of cis- and trans-acting factors has greatly enhanced the secretory capabilities of P. pastoris, however protein-specific engineering of a host organism is costly and not always effective. P. pastoris' secretion inefficiency is commonly due to trans-acting factors. Strains of S. cerevisiae have been engineered, through random genomic mutation, that are capable of overcoming these /ram-acting factors to secrete high levels of foreign protein. The Lin-Cereghino laboratory at University of the Pacific has developed a screen to identify mutations in P. pastoris capable of circumventing secretion obstacles. The P. pastoris genome was randomly disrupted through restriction enzyme-mediated integration of an antibiotic resistance marker. Supersecretion mutants were identified by their ability to secrete β-galactosidase, a reporter enzyme not natively secreted by P. pastoris. Sixteen β-galactosidase secretion (bgs) mutants were initially isolated by the Lin-Cereghino lab. This research focused on characterizing one of the resultant bgs mutants, ///. Initial sequencing and alignment studies identified the predicted LI1p sequence to be homologous to S. cerevisiae protein kinase C (PKC). Considering the role of PKC in the Cell Wall Integrity pathway of S. cerevisiae. the cell wall and secretory organelles of III were closely examined using transmission electron microscopy. Additionally, a qualitative alkaline phosphatase assay was used to evaluate the cell wall integrity of ///. Finally, the secretory phenotype of 111 was examined using a group of structurally and functionally diverse reporter proteins. In characterizing the bgs mutant, III, this research contributes to an understanding of cellular components that limit protein secretion in the yeast, P. pastoris.
175

Characterization of the 5̕ untranslated region ( 5̕ UTR) of the alcohol oxidase I (AOX I) gene in Pichia pastoris.

Staley, Christopher A. 01 January 2007 (has links)
The primary focus of this study was on the characterization of the 122 nucleotide 5' Untranslated Region (UTR) of the Alcohol Oxidase I (AOXI) gene in Pichia pastoris. The 5' UTR influences the expression of many heterologous proteins in P. pastoris. However, no systematic analysis has ever been performed on this region to date. Several truncated versions of the 5' UTR were constructed using the QuikChange II XL Site Directed Mutagenesis Kit from Stratagene, PCR, and primers designed for a distinct region. Deletions of 21, 25, 30, 43, 61, 78, and 95 nucleotides were done to the 5' UTR. Elongated versions of the 5' UTRs were constructed where fragments of 10, 20, 30, 33, 36, 40, 45, and 50 nucleotides were inserted into the vector, subsequently increasing the length of the 5' UTR. All constructs were assessed using the β-galactosidase activity assay to determine if various constructs led to an increase or decrease in the rate of translation. Deletions had a variable effect on β-galactosidase expression, whereas additions decreased expression but not in a linear fashion. Final confirmation was performed using Northern analysis to ensure that the effects were due to translation rates and not nRNA transcription or degradation.
176

Expression and functional characterization of the recombinant spider protein GW2 in yeast Pichia pastoris

Zhou, Yinhan 01 January 2013 (has links)
The chairperson of the candidate's dissertation committee is responsible for securing the signature of each committee member and the grade, which she/he wishes to assign, to be entered in the appropriate spaces below. Most dissertations are graded on a pass (P) or no credit (NC) basis. The grades assigned need not be the same for all committee members. The exact title of the dissertation must appear in the space indicated for that purpose. The undersigned confirm that we have reviewed this document and examined the student regarding its content. We agree that this document conforms to acceptable standards of scholarly presentation in scope and quality and that the attainments of this student are such that we recommend the conferral of
177

Structural characterization of the MATα prepro-peptide secretion leader in Pichia pastoris

Chahal, Sabreen 01 January 2016 (has links)
The methylotrophic yeast, Pichia pastoris, is the most successful and favored microbial eukaryotic expression system for the production of recombinant proteins for biopharmaceutical or industrial purposes. P. pastoris has the ability to produce foreign proteins at high levels extracellularly, and since it secretes few endogenous proteins, this ability eliminates the need for expensive purification costs. It also combines the ease of genetic manipulation with rapid growth to high cell densities and provides complex posttranslational modifications. The most commonly utilized secretion signal leader in P. pastoris is the MATα prepro signal leader, originally found in S. cerevisiae. However, because some proteins cannot be secreted efficiently by P. pastoris, strategies to enhance secretion efficiency have involved the modification of the MATα prepro secretion signal leader. The study focuses on using site-directed mutagenesis of specific sets of amino acids of MATα prepro secretion leader to evaluate the correlation between secondary structure and secretion level. MATα pro-HRP mutants were created, in order to analyze the export of heterologous proteins in P. pastoris. In addition, structural analysis through circular dichroism was performed on mutant MATα pro-peptides to evaluate differences in secondary structure as a result of the mutagenesis. Mutants, pSC6 (Δ57-65) and pSC7 (Δ66-70) did not generate the same HRP secretion level as Δ57-70. In addition, a new proposed model of MATα pro-peptide signal leader was created. This new model suggests that the N and C terminus of MATα pro-peptide need to be presented correctly for proper interaction with secretion machinery and for efficient protein secretion. With these analyses, optimization of secretion systems can be achieved to impact the fields of science, industry, healthcare, and economics worldwide.
178

Characterization of the Pichia pastoris alcohol oxidase I promoter

Johnson, Sabrina D. 01 January 2003 (has links)
The methylotrophic yeast, Pichia past oris, is one of the most respected and widely used systems today. The ability of this yeast to produce large masses of protein and metabolize methanol as a sole source of carbon and energy is attributed to the highly induceable Alcohol Oxidase I promoter (AOXI). Despite of the disperse popularity and use of this promoter over the last 15 years, little is known about the transcription controls at a molecular level. A 5'>3' deletion analysis of the AOXI promoter was perrormed to gain understanding of the promoter's regulation and provided insight to the approximate locations of the important regulatory regions. A total of 10 truncations were made unveiling two areas ofhigh activity located between positions, -257 to-235, and, -235 to -188. In addition, a 14-base pair internal deletion was made between positions, -215 to -201. This region was shown to be necessary for transcriptional activation by deletion analysis. Sufficiency studies suggested that this 14-base pair element could serve as an activator sequence in both glucose and methanol.
179

Cloning and characterization of the Pichia Pastoris PMR1 gene

Grove, Heather Lee 01 January 2005 (has links)
Pichia pastoris, a popular protein expression system, is limited in its ability to secrete heterologous proteins. The PMR1 gene, the disruption of which is known to improve the secretion of prochymosin, human prourokinase, and human tissue plasminogen activator in Saccharomyces cerevisiae, was cloned from P. pastoris. The pmr 1 mutant in S. cerevisiae also displayed a slow growth phenotype when grown on low Ca2+ medium. The putative P. pastoris PMR1 gene, encoding for a 924 amino acid P-type Ca2+ ATPase, was disrupted in P. pastoris and the secretion of horseradish peroxidase (HRP) and β-galactosidase (β-gal) analyzed. Secreted HRP activity was determined using 3,3',5,5' tetramethylbenzidine (TMB) colorimetric assay and western analysis. β-gal expression and secretion was determined by western analysis. Secretion in P. pastorius Δpmr1 for both heterologous proteins showed no appreciable difference compared to wild type, nor did P. pastoris Δpmr1 display the slow growth phenotype seen in S. cerevisiae Δpmr1 (Rudolph H. et al., 1989).
180

The structural characterization of the Saccharomyces cerevisiae alpha mating factor secretion signal for recombinant protein secretion in Pichia pastoris

Wei, Peter 01 January 2015 (has links)
The methylotrophic yeast Pichia pastoris has been used extensively for expressing recombinant proteins because it combines the ease of genetic manipulation with rapid growth to high cell densities and provides complex posttranslational modifications. The most successful and commonly used secretion signal leader in Pichia pastoris has been the MAT α prepro secretion signal. However, limitations exist as some proteins cannot be secreted efficiently even with the MAT α prepro secretion signal. Some strategies to enhance secretion efficiency involved modifying the secretion signal leader. Based on the knob-socket model and Jpred3 ( a secondary structure predictor), eleven deletions of MAT α prepro secretion signal and one MAT α pre double pro-peptide mutant was engineered and assayed with either horseradish peroxidase (HRP), or Candida antarctica lipase B reporter protein to evaluate the correlation between secondary structure and secretion level. In addition, structural analysis through circular dichroism was completed for the wild type pro-peptide and a mutant pro-peptide to evaluate differences in secondary structure. Results suggest pro-peptide amino acids 75-78 play an important role in determining secretion level and a higher secretion level tends to associate with secondary structures that are less defined. With these analyses, optimization of secretion systems can be achieved to impact the fields of science, industry, healthcare, and economics worldwide.

Page generated in 0.0535 seconds