• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tropomyosin in Normal and Malignant Cells and the Action of Picropodophyllin on the Microfilament and Microtubule Systems

Zhao Rathje, Li-Sophie January 2009 (has links)
Cell motility is a fundamental process, enabling cells to migrate, for instance during embryogenesis, tissue repair and defense. Force is generated by two protein systems, which also participate in cell proliferation, control macromolecular and organelle distribution and determine the fine structure of the cell interior. The major components of these are actin and tubulin, respectively, and they are referred to as the microfilament and the microtubule systems. This thesis focuses on tropomyosin, one of many microfilament associated proteins coupled to actin dynamics and organization and expressed in several isoform variants. Altered distribution and isoform expression of tropomyosin are signatures of malignant cells and are dealt with in the current thesis. The presence of tropomyosin isoforms in protruding lamellipodia of migrating cells is demonstrated, and a method to fractionate tropomyosin depending on its organization in an easily extractable, and a more tightly bound cytoplasmic form is presented. Analysis of the loosely associated tropomyosin fraction by gel filtration chromatography revealed that most of the tropomyosins in this fraction exist in a multimeric form. It was also observed that the distribution of tropomyosin varied between non-transformed and transformed cells with most of the isoforms enriched in the loosely bound fraction in the latter category of cells. Possibly this reflects the extensive reorganization of the microfilament system observed in cancer cells and which, depending on the context, can be normalized by introduction of certain tropomyosin isoforms. Many anti-cancer drugs target the microtubule system, inhibit cell division and promote apoptosis. Here it is shown that picropodophyllin, which has promising anticancer properties has a destabilizing effect on microtubules and via the microfilament system causes cells to detach from their substratum. Furthermore, picropodophyllin interferes with stimulation of the insulin-like growth factor receptor, which is involved in growth stimulation, differentiation and survival and whose expression is up-regulated in cancer cells.
2

Potential New Drugs in Lymphoma

Delforoush, Maryam January 2016 (has links)
Lymphomas are malignant tumours arising from cells in the lymphatic system. They are classified as B-cell lymphomas, T-cell lymphomas and Hodgkin lymphoma (HL). Of the B-cell lymphomas, one of the most common is diffuse large B-cell lymphoma (DLBCL). Many patients with lymphomas can be successfully treated however patients who relapse or are refractory have a poor prognosis, warranting further investigations to identify potential targets and develop novel drugs. Picropodophyllin (PPP), a potent and selective inhibitor of IGF-1R, inhibits malignant cell growth with low or no toxicity on normal cells in preclinical models. In paper I, we investigated the potential benefits of using PPP against DLBCL and found that the anti-tumor effects of PPP might possibly be explained by IGF-1R-unrelated mechanism(s). However, the inhibitory effects of PPP on lymphoma cells together with its low toxicity in vivo makes it a promising drug candidate for treatment. Melflufen, a derivative of melphalan, is currently being evaluated in a clinical phase I/II trial in relapsed or refractory multiple myeloma. In paper II, we confirmed previous reports of superior potency of melflufen over melphalan. Being active in cell lines and primary cultures of lymphoma cells as well as in a xenograft model in mice, melflufen considered being a candidate for further evaluation in treatment. bAP-15, a novel inhibitor of proteasome activity, inhibits ubiquitin specific peptidase 14 (USP14) and ubiquitin carboxyl-terminal hydrolase L5 (UCHL5). In paper III, we investigated the activity of b-AP15 in DLBCL and HL cell lines and compared the results to standard drugs used in treatment. Results showed inhibition of the proteasome and growth inhibition/cytotoxicity with IC50-values in the micromolar range. Treatment failure and lack of clinical benefit of proteasome inhibitors like bortezomib in DLBCL patients inspired us investigating for possible new targets, with major focus on proteasome inhibitors in DLBCL. In paper IV, we suggested that UCHL5 and/or USP14, as new targets for proteasome inhibitors in DLBCL, be further evaluated. The findings in this thesis suggest that PPP, Melflufen and b-AP15 are potential candidates for clinical drug development and UCHL5 and/or USP14 are new potential targets for proteasome inhibitors in DLBCL.

Page generated in 0.0473 seconds