• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Controle ativo de vibrações e localização ótima de sensores e atuadores piezelétricos /

Bueno, Douglas Domingues. January 2007 (has links)
Orientador: Vicente Lopes Júnior / Banca: Walter Katsumi Sakamoto / Banca: Alberto Luiz Serpa / Resumo: Este trabalho apresenta o projeto do regulador linear quadrático (LQR - do inglês Linear Quadratic Regulator) para atenuar vibrações em estruturas mecânicas. Estas estruturas, com atuadores e sensores acoplados, são denominadas estruturas inteligentes. Os projetos de controladores ativos são resolvidos utilizando desigualdades matriciais lineares (LMIs - do inglês Linear Matrix Inequalities). Assim, é possível projetar controladores robustos considerando incertezas paramétricas na planta a ser controlada. São utilizados atuadores e sensores piezelétricos (PZTs) para aplicações em estruturas flexíveis dos tipos vigas e placas e, também, atuadores de pilha para aplicações em estruturas do tipo treliça. O problema do posicionamento ótimo dos atuadores e sensores piezelétricos também é resolvido utilizando as normas de sistemas H2, H , Hankel e as matrizes grammianas de observabilidade e controlabilidade. O modelo matemático da estrutura inteligente é obtido a partir do Método dos Elementos Finitos e, também, utilizando o Método de Identificação de Subespaços através de dados experimentais. O problema de posicionamento ótimo dos atuadores e sensores e o controle ativo de vibração são apresentados em simulações numéricas e experimentais. Os resultados mostram que os controladores robustos aumentam o amortecimento estrutural minimizando as amplitudes de vibração. / Abstract: This work presents the Linear Quadratic Regulator design to vibration attenuation in mechanical structures. These structures are named Smart Structures because they use actuators and sensors electromechanically coupled. Active controller designs are solved using Linear Matrix Inequalities. So, it is possible to consider polytopic uncertainties. Piezoelectric actuators and sensors are used for applications in flexible structures as beams and plates and, also, stack actuators for applications in truss structures. Optimal placement problem of piezoelectric actuators and sensors also solved using H2, H , Hankel system norms and controllability and observability grammian matrices. The mathematical model of the smart structure is obtained through Finite Element Method and, also, through Numerical State Space of Subspace System Identification (Subspace Method) by experimental data. The optimal placement of actuator and sensor and the active vibration control is numerically and experimentally implemented. Results show that the robust controllers increase the structural damping minimizing magnitude of vibrations. / Mestre
2

Análise de incertezas no controle de vibração em sistemas de materiais compósitos com atuação piezelétrica

Awruch, Marcos Daniel de Freitas January 2016 (has links)
Com o aperfeiçoamento de materiais compósitos de alto desempenho, surge a possibilidade do desenvolvimento de estruturas inteligentes, onde atuadores e sensores piezelétricos estão integrados na estrutura com sistemas de controle adequados para a atenuação de vibrações. Projetos multidisciplinares se tornam cada vez mais complexos e sofisticados, envolvendo diversas fontes de incertezas que devem ser analisadas e quantificadas. O escopo principal desse trabalho visa o estudo da propagação de incertezas em estruturas de materiais compósitos laminados com atuadores e sensores piezelétricos, onde entradas e parâmetros do projeto podem ser fontes aleatórias e/ou nebulosas. Para atingir esse objetivo é adotada a metodologia fuzzy, com a aplicação de otimização de cortes-α. Essa técnica é utilizada na presença de informações vagas ou imprecisas acerca da aleatoriedade presente. Nesse estudo projetam-se, através do método dos elementos finitos, estruturas em forma de placa e casca de material compósito laminado com atuadores e sensores piezelétricos acoplados, controlados pelos reguladores Linear Quadratic Regulator (LQR) e Linear Quadratic Gaussian (LQG). Inicialmente são realizados estudos de otimização para encontrar a melhor localização dos componentes piezelétricos pelos Gramianos de controlabilidade e observabilidade, assim como os fatores de ponderação das leis de controle. O desenvolvimento é realizado no espaço modal reduzido visando um melhor desempenho computacional. As métricas escolhidas para avaliação do controle de vibração e análise das saídas incertas do sistema são baseadas nas energias cinética, potencial e elétrica. Também apresentam-se estudos de envelopes relacionados ao deslocamentos e às frequências naturais da estrutura devido às incertezas. Os resultados mostraram que as otimizações por corte-α para tratar números fuzzy nesse tipo de problema são robustas e eficientes, encontrando-se valores extremos das saídas desejadas. Além de ser um método não intrusivo, também pode ser utilizado em problemas com um número elevado de parâmetros incertos como entrada. / The possibility of developments of smart structures arises with high performance composite materials improvements, where piezoelectric actuators and sensors are embedded into the structures, following a suitable control laws for vibration attenuation. Multidisciplinary projects are becoming highly complex and sophisticated, involving several sources of uncertainty that should be analyzed and quantified. The main objective for this work is to study the uncertainty propagation in composite laminate structures with embedded piezoelectric actuators and sensors, considering random and/or fuzzy sources for the inputs and design parameters. To accomplish this objective, it is adopted the fuzzy α-cut optimizations methodology. This technique is used when the available information related to the actual randomness is vague or imprecise. In this study, laminated composite shells and plates structures are designed and analyzed by the finite element method, where embedded piezoelectric actuators and sensors controlled by Linear Quadratic Regulator (LQR) and Linear Quadratic Gaussian (LQG) are present. Initially, optimization analyses are executed to find the best arrangement for the piezoelectric material using controllability and observability Gramians metrics, as well as the best controller parameters. This study is developed in the reduced modal space looking for computational costs savings. The chosen rating metrics for the vibration control and uncertainty analysis are based on kinetic, potential and electrical energies. Structural displacements and natural frequency envelopes due uncertainty are also studied and presented. The results have shown that the fuzzy α-cut optimizations methodology is robust and efficient to find extreme values for the sought outputs. In addition to being a non-intrusive method, it is also able to deal with a large number of uncertain input parameters.
3

Análise de incertezas no controle de vibração em sistemas de materiais compósitos com atuação piezelétrica

Awruch, Marcos Daniel de Freitas January 2016 (has links)
Com o aperfeiçoamento de materiais compósitos de alto desempenho, surge a possibilidade do desenvolvimento de estruturas inteligentes, onde atuadores e sensores piezelétricos estão integrados na estrutura com sistemas de controle adequados para a atenuação de vibrações. Projetos multidisciplinares se tornam cada vez mais complexos e sofisticados, envolvendo diversas fontes de incertezas que devem ser analisadas e quantificadas. O escopo principal desse trabalho visa o estudo da propagação de incertezas em estruturas de materiais compósitos laminados com atuadores e sensores piezelétricos, onde entradas e parâmetros do projeto podem ser fontes aleatórias e/ou nebulosas. Para atingir esse objetivo é adotada a metodologia fuzzy, com a aplicação de otimização de cortes-α. Essa técnica é utilizada na presença de informações vagas ou imprecisas acerca da aleatoriedade presente. Nesse estudo projetam-se, através do método dos elementos finitos, estruturas em forma de placa e casca de material compósito laminado com atuadores e sensores piezelétricos acoplados, controlados pelos reguladores Linear Quadratic Regulator (LQR) e Linear Quadratic Gaussian (LQG). Inicialmente são realizados estudos de otimização para encontrar a melhor localização dos componentes piezelétricos pelos Gramianos de controlabilidade e observabilidade, assim como os fatores de ponderação das leis de controle. O desenvolvimento é realizado no espaço modal reduzido visando um melhor desempenho computacional. As métricas escolhidas para avaliação do controle de vibração e análise das saídas incertas do sistema são baseadas nas energias cinética, potencial e elétrica. Também apresentam-se estudos de envelopes relacionados ao deslocamentos e às frequências naturais da estrutura devido às incertezas. Os resultados mostraram que as otimizações por corte-α para tratar números fuzzy nesse tipo de problema são robustas e eficientes, encontrando-se valores extremos das saídas desejadas. Além de ser um método não intrusivo, também pode ser utilizado em problemas com um número elevado de parâmetros incertos como entrada. / The possibility of developments of smart structures arises with high performance composite materials improvements, where piezoelectric actuators and sensors are embedded into the structures, following a suitable control laws for vibration attenuation. Multidisciplinary projects are becoming highly complex and sophisticated, involving several sources of uncertainty that should be analyzed and quantified. The main objective for this work is to study the uncertainty propagation in composite laminate structures with embedded piezoelectric actuators and sensors, considering random and/or fuzzy sources for the inputs and design parameters. To accomplish this objective, it is adopted the fuzzy α-cut optimizations methodology. This technique is used when the available information related to the actual randomness is vague or imprecise. In this study, laminated composite shells and plates structures are designed and analyzed by the finite element method, where embedded piezoelectric actuators and sensors controlled by Linear Quadratic Regulator (LQR) and Linear Quadratic Gaussian (LQG) are present. Initially, optimization analyses are executed to find the best arrangement for the piezoelectric material using controllability and observability Gramians metrics, as well as the best controller parameters. This study is developed in the reduced modal space looking for computational costs savings. The chosen rating metrics for the vibration control and uncertainty analysis are based on kinetic, potential and electrical energies. Structural displacements and natural frequency envelopes due uncertainty are also studied and presented. The results have shown that the fuzzy α-cut optimizations methodology is robust and efficient to find extreme values for the sought outputs. In addition to being a non-intrusive method, it is also able to deal with a large number of uncertain input parameters.
4

Controle ativo de vibrações e localização ótima de sensores e atuadores piezelétricos

Bueno, Douglas Domingues [UNESP] 24 September 2007 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:27:14Z (GMT). No. of bitstreams: 0 Previous issue date: 2007-09-24Bitstream added on 2014-06-13T20:55:55Z : No. of bitstreams: 1 bueno_dd_me_ilha.pdf: 2346457 bytes, checksum: 53a7ababeeced81edd91bb8ef04b1c0f (MD5) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Este trabalho apresenta o projeto do regulador linear quadrático (LQR – do inglês Linear Quadratic Regulator) para atenuar vibrações em estruturas mecânicas. Estas estruturas, com atuadores e sensores acoplados, são denominadas estruturas inteligentes. Os projetos de controladores ativos são resolvidos utilizando desigualdades matriciais lineares (LMIs – do inglês Linear Matrix Inequalities). Assim, é possível projetar controladores robustos considerando incertezas paramétricas na planta a ser controlada. São utilizados atuadores e sensores piezelétricos (PZTs) para aplicações em estruturas flexíveis dos tipos vigas e placas e, também, atuadores de pilha para aplicações em estruturas do tipo treliça. O problema do posicionamento ótimo dos atuadores e sensores piezelétricos também é resolvido utilizando as normas de sistemas H2, H , Hankel e as matrizes grammianas de observabilidade e controlabilidade. O modelo matemático da estrutura inteligente é obtido a partir do Método dos Elementos Finitos e, também, utilizando o Método de Identificação de Subespaços através de dados experimentais. O problema de posicionamento ótimo dos atuadores e sensores e o controle ativo de vibração são apresentados em simulações numéricas e experimentais. Os resultados mostram que os controladores robustos aumentam o amortecimento estrutural minimizando as amplitudes de vibração. / This work presents the Linear Quadratic Regulator design to vibration attenuation in mechanical structures. These structures are named Smart Structures because they use actuators and sensors electromechanically coupled. Active controller designs are solved using Linear Matrix Inequalities. So, it is possible to consider polytopic uncertainties. Piezoelectric actuators and sensors are used for applications in flexible structures as beams and plates and, also, stack actuators for applications in truss structures. Optimal placement problem of piezoelectric actuators and sensors also solved using H2, H , Hankel system norms and controllability and observability grammian matrices. The mathematical model of the smart structure is obtained through Finite Element Method and, also, through Numerical State Space of Subspace System Identification (Subspace Method) by experimental data. The optimal placement of actuator and sensor and the active vibration control is numerically and experimentally implemented. Results show that the robust controllers increase the structural damping minimizing magnitude of vibrations.
5

Análise de incertezas no controle de vibração em sistemas de materiais compósitos com atuação piezelétrica

Awruch, Marcos Daniel de Freitas January 2016 (has links)
Com o aperfeiçoamento de materiais compósitos de alto desempenho, surge a possibilidade do desenvolvimento de estruturas inteligentes, onde atuadores e sensores piezelétricos estão integrados na estrutura com sistemas de controle adequados para a atenuação de vibrações. Projetos multidisciplinares se tornam cada vez mais complexos e sofisticados, envolvendo diversas fontes de incertezas que devem ser analisadas e quantificadas. O escopo principal desse trabalho visa o estudo da propagação de incertezas em estruturas de materiais compósitos laminados com atuadores e sensores piezelétricos, onde entradas e parâmetros do projeto podem ser fontes aleatórias e/ou nebulosas. Para atingir esse objetivo é adotada a metodologia fuzzy, com a aplicação de otimização de cortes-α. Essa técnica é utilizada na presença de informações vagas ou imprecisas acerca da aleatoriedade presente. Nesse estudo projetam-se, através do método dos elementos finitos, estruturas em forma de placa e casca de material compósito laminado com atuadores e sensores piezelétricos acoplados, controlados pelos reguladores Linear Quadratic Regulator (LQR) e Linear Quadratic Gaussian (LQG). Inicialmente são realizados estudos de otimização para encontrar a melhor localização dos componentes piezelétricos pelos Gramianos de controlabilidade e observabilidade, assim como os fatores de ponderação das leis de controle. O desenvolvimento é realizado no espaço modal reduzido visando um melhor desempenho computacional. As métricas escolhidas para avaliação do controle de vibração e análise das saídas incertas do sistema são baseadas nas energias cinética, potencial e elétrica. Também apresentam-se estudos de envelopes relacionados ao deslocamentos e às frequências naturais da estrutura devido às incertezas. Os resultados mostraram que as otimizações por corte-α para tratar números fuzzy nesse tipo de problema são robustas e eficientes, encontrando-se valores extremos das saídas desejadas. Além de ser um método não intrusivo, também pode ser utilizado em problemas com um número elevado de parâmetros incertos como entrada. / The possibility of developments of smart structures arises with high performance composite materials improvements, where piezoelectric actuators and sensors are embedded into the structures, following a suitable control laws for vibration attenuation. Multidisciplinary projects are becoming highly complex and sophisticated, involving several sources of uncertainty that should be analyzed and quantified. The main objective for this work is to study the uncertainty propagation in composite laminate structures with embedded piezoelectric actuators and sensors, considering random and/or fuzzy sources for the inputs and design parameters. To accomplish this objective, it is adopted the fuzzy α-cut optimizations methodology. This technique is used when the available information related to the actual randomness is vague or imprecise. In this study, laminated composite shells and plates structures are designed and analyzed by the finite element method, where embedded piezoelectric actuators and sensors controlled by Linear Quadratic Regulator (LQR) and Linear Quadratic Gaussian (LQG) are present. Initially, optimization analyses are executed to find the best arrangement for the piezoelectric material using controllability and observability Gramians metrics, as well as the best controller parameters. This study is developed in the reduced modal space looking for computational costs savings. The chosen rating metrics for the vibration control and uncertainty analysis are based on kinetic, potential and electrical energies. Structural displacements and natural frequency envelopes due uncertainty are also studied and presented. The results have shown that the fuzzy α-cut optimizations methodology is robust and efficient to find extreme values for the sought outputs. In addition to being a non-intrusive method, it is also able to deal with a large number of uncertain input parameters.
6

Ανάπτυξη μεθόδου πεπερασμένων στοιχείων για την επίλυση της σύζευξης μη γραμμικής συμπεριφοράς ευφυών πλακών και κελυφών με πιεζοηλεκτρικά στοιχεία

Βαρέλης, Δημήτρης 25 June 2007 (has links)
Περίληψη Σκοπός της παρούσας διδακτορικής διατριβής είναι η διατύπωση µοντέλων µηχανικής και η ανάπτυξη µεθοδολογίας πεπερασµένων στοιχείων, για τηv αριθµητική επίλυση τoυ προβλήµατος της συζευγµένης µη-γραµµικής απόκρισης πιεζοηλεκτρικών κελυφών και πλακών µε εµφυτευµένα πιεζοηλεκτρικά στοιχεία. Η ανάπτυξη της παρούσας µεθόδου στηρίχθηκε σε θεωρίες µεσοµηχανικής για τη ανάλυση στρωµατοποιηµένων πιεζοηλεκτρικών κελυφών και κατά επέκταση πλακών και δοκών. Πιο συγκεκριµένα διατυπώνονται σε επίπεδο στρώσης, οι καταστατικές εξισώσεις του ηλεκτροµηχανικού πεδίου, οι εξισώσεις συµβιβαστού των παραµορφώσεων-µετατοπίσεων, που εµπεριέχουν την γεωµετρική µη γραµµικότητα, καθώς και οι γενικευµένες εξισώσεις κίνησης (εξισώσεις ισορροπίας των τάσεων στο µηχανικό και διατήρησης ηλεκτρικού φορτίου στο ηλεκτρικό πεδίο). Στη συνέχεια δύναται να γραφούν οι παραπάνω εξισώσεις κίνησης σε ολοκληρωτική µορφή, µε την βοήθεια της αρχής των φανταστικών µετατοπίσεων, ώστε να ισχύουν για ολόκληρη την πιεζοηλεκτρική πολύστρωτη δοµή. Τα παραπάνω ολοκληρώµατα όγκου υποβιβάζονται σε ολοκληρώµατα επιφάνειας µε την εισαγωγή των κινηµατικών υποθέσεων για τις ελαστικές και ηλεκτρικές µεταβλητές κατάστασης. Για την επίλυση των παραπάνω συζευγµένων µη γραµµικών ολοκληρωτικών εξισώσεων αναπτύχθηκε µέθοδος πεπερασµένων στοιχείων. ∆υο 8-κοµβα συζευγµένα µη γραµµικά ισοπαραµετρικά πεπερασµένα στοιχεία κελύφους και πλάκας αναπτύσσονται. Στο εσωτερικό των στοιχειών το παραµορφωσιακό πεδίο προσεγγίζεται µε πολυώνυµικές εξισώσεις δευτέρου βαθµού, που ονοµάζονται συναρτήσεις µορφής. Με την βοήθεια των συναρτήσεων µορφής προκύπτουν οι συζευγµένες µη γραµµικές εξισώσεις σε µητρωική µορφή, και λόγω του ότι εξαρτώνται από τη λύση δεν µπορούν να λυθούν απευθείας αλλά χρησιµοποιείται µια σταδιακή- επαναληπτική µέθοδος βασισµένη στη Newton-Raphson τεχνική. Αφού πραγµατοποιηθεί η σύνθεση των ολικών µητρώων, εφαρµοστούν οι µηχανικές και ηλεκτρικές συνοριακές συνθήκες τελικά επιλύονται οι προκύπτουσες γραµµικοποιηµένες συζευγµένες εξισώσεις σε κάθε επανάληψη εως ότου επιτευχθεί σύγκλιση της λύσης. Σε κάθε επανάληψη υπολογίζονται ταπραγµατικά και εφαπτοµενικά µη γραµµικά µητρώα καθώς επίσης και τα διανύσµατα ανισορροπίας µεταξύ των εξωτερικών και εσωτερικών δυνάµεων και ηλεκτρικών φορτίων. Τα µη γραµµικά ελαστικά και πιεζοηλεκτρικά µητρώα, που εµπεριέχουν τη γεωµετρική µη γραµµικότητα, καθώς και τα γραµµικά επιλύονται αριθµητικά µε τη µέθοδο Gauss. Η παρούσα µέθοδος µπορεί να εφαρµοστεί για τη διερεύνηση και αριθµητική επίλυση µιας σειράς προβληµάτων ευφυών πιεζοηλεκτρικών κατασκευών, όπου η γεωµετρική µη γραµµικότητα (µεγάλες µετατοπίσεις και περιστροφές σε σχέση µε το πάχος, αλλά µικρές παραµορφώσεις) παίζει σηµαντικό ή πρωτεύοντα ρόλο, µε ιδιαίτερη έµφαση στα εξής προβλήµατα: Μοντελοποίηση ευφυών κατασκευών υπό µεγάλη κάµψη. Εφαρµογές σε κατασκευές, στις οποίες επιδιώκονται µεγάλες αλλαγές στο σχήµα τους µέσω µεγάλων ενεργών µετατοπίσεων και περιστροφών, υπό την επιβολή ηλεκτρικού πεδίου στους πιεζοηλεκτρικούς διεγέρτες (morphing structures) . Πρόβλεψη κρίσιµων επίπεδων µηχανικών δυνάµεων και ηλεκτρικών τάσεων λυγισµού, οι οποίες µπορεί να οδηγήσουν τις ευφυείς πλάκες και τα κελύφη σε συνθήκες λυγισµού και απώλειας ευστάθειας. Πρόβλεψη και προσοµοίωση του λυγισµού και µετα-λυγισµού σε panel αεροναυπηγικών κατασκευών, µέσω παρακολούθησης της µεταβολής των φυσικών συχνοτήτων της κατασκευής ή της αναπτυσσόµενης ηλεκτρικής τάσης στους πιεζοηλεκτρικούς αισθητήρες. Την ενεργή µεταβολή της δυσκαµψίας (αύξηση ή µείωση) ευφυών κατασκευών µε την επιβολή κατάλληλου ηλεκτρικού δυναµικού στους πιεζοηλεκτρικούς διεγέρτες. Πρόβλεψη της µετάβασης των πιεζοηλεκτρικών κελυφών από τη µια θέση ισορροπίας σε άλλη (snap-through), υπό την επιβολή µηχανικού φορτίου ή πιεζοηλεκτρικής καµπτικής ροπής µέσω των πιεζοηλεκτρικών διεγερτών.πραγµατικά και εφαπτοµενικά µη γραµµικά µητρώα καθώς επίσης και τα διανύσµατα ανισορροπίας µεταξύ των εξωτερικών και εσωτερικών δυνάµεων και ηλεκτρικών φορτίων. Τα µη γραµµικά ελαστικά και πιεζοηλεκτρικά µητρώα, που εµπεριέχουν τη γεωµετρική µη γραµµικότητα, καθώς και τα γραµµικά επιλύονται αριθµητικά µε τη µέθοδο Gauss. Η παρούσα µέθοδος µπορεί να εφαρµοστεί για τη διερεύνηση και αριθµητική επίλυση µιας σειράς προβληµάτων ευφυών πιεζοηλεκτρικών κατασκευών, όπου η γεωµετρική µη γραµµικότητα (µεγάλες µετατοπίσεις και περιστροφές σε σχέση µε το πάχος, αλλά µικρές παραµορφώσεις) παίζει σηµαντικό ή πρωτεύοντα ρόλο, µε ιδιαίτερη έµφαση στα εξής προβλήµατα: Μοντελοποίηση ευφυών κατασκευών υπό µεγάλη κάµψη. Εφαρµογές σε κατασκευές, στις οποίες επιδιώκονται µεγάλες αλλαγές στο σχήµα τους µέσω µεγάλων ενεργών µετατοπίσεων και περιστροφών, υπό την επιβολή ηλεκτρικού πεδίου στους πιεζοηλεκτρικούς διεγέρτες (morphing structures) . Πρόβλεψη κρίσιµων επίπεδων µηχανικών δυνάµεων και ηλεκτρικών τάσεων λυγισµού, οι οποίες µπορεί να οδηγήσουν τις ευφυείς πλάκες και τα κελύφη σε συνθήκες λυγισµού και απώλειας ευστάθειας. Πρόβλεψη και προσοµοίωση του λυγισµού και µετα-λυγισµού σε panel αεροναυπηγικών κατασκευών, µέσω παρακολούθησης της µεταβολής των φυσικών συχνοτήτων της κατασκευής ή της αναπτυσσόµενης ηλεκτρικής τάσης στους πιεζοηλεκτρικούς αισθητήρες. Την ενεργή µεταβολή της δυσκαµψίας (αύξηση ή µείωση) ευφυών κατασκευών µε την επιβολή κατάλληλου ηλεκτρικού δυναµικού στους πιεζοηλεκτρικούς διεγέρτες. Πρόβλεψη της µετάβασης των πιεζοηλεκτρικών κελυφών από τη µια θέση ισορροπίας σε άλλη (snap-through), υπό την επιβολή µηχανικού φορτίου ή πιεζοηλεκτρικής καµπτικής ροπής µέσω των πιεζοηλεκτρικών διεγερτών.πραγµατικά και εφαπτοµενικά µη γραµµικά µητρώα καθώς επίσης και τα διανύσµατα ανισορροπίας µεταξύ των εξωτερικών και εσωτερικών δυνάµεων και ηλεκτρικών φορτίων. Τα µη γραµµικά ελαστικά και πιεζοηλεκτρικά µητρώα, που εµπεριέχουν τη γεωµετρική µη γραµµικότητα, καθώς και τα γραµµικά επιλύονται αριθµητικά µε τη µέθοδο Gauss. Η παρούσα µέθοδος µπορεί να εφαρµοστεί για τη διερεύνηση και αριθµητική επίλυση µιας σειράς προβληµάτων ευφυών πιεζοηλεκτρικών κατασκευών, όπου η γεωµετρική µη γραµµικότητα (µεγάλες µετατοπίσεις και περιστροφές σε σχέση µε το πάχος, αλλά µικρές παραµορφώσεις) παίζει σηµαντικό ή πρωτεύοντα ρόλο, µε ιδιαίτερη έµφαση στα εξής προβλήµατα: Μοντελοποίηση ευφυών κατασκευών υπό µεγάλη κάµψη. Εφαρµογές σε κατασκευές, στις οποίες επιδιώκονται µεγάλες αλλαγές στο σχήµα τους µέσω µεγάλων ενεργών µετατοπίσεων και περιστροφών, υπό την επιβολή ηλεκτρικού πεδίου στους πιεζοηλεκτρικούς διεγέρτες (morphing structures) . Πρόβλεψη κρίσιµων επίπεδων µηχανικών δυνάµεων και ηλεκτρικών τάσεων λυγισµού, οι οποίες µπορεί να οδηγήσουν τις ευφυείς πλάκες και τα κελύφη σε συνθήκες λυγισµού και απώλειας ευστάθειας. Πρόβλεψη και προσοµοίωση του λυγισµού και µετα-λυγισµού σε panel αεροναυπηγικών κατασκευών, µέσω παρακολούθησης της µεταβολής των φυσικών συχνοτήτων της κατασκευής ή της αναπτυσσόµενης ηλεκτρικής τάσης στους πιεζοηλεκτρικούς αισθητήρες. Την ενεργή µεταβολή της δυσκαµψίας (αύξηση ή µείωση) ευφυών κατασκευών µε την επιβολή κατάλληλου ηλεκτρικού δυναµικού στους πιεζοηλεκτρικούς διεγέρτες. Πρόβλεψη της µετάβασης των πιεζοηλεκτρικών κελυφών από τη µια θέση ισορροπίας σε άλλη (snap-through), υπό την επιβολή µηχανικού φορτίου ή πιεζοηλεκτρικής καµπτικής ροπής µέσω των πιεζοηλεκτρικών διεγερτών. / -
7

Active Vibration Control Synthesis Using Viscoelastic Damping Phenomena

Vadiraja, G K 07 1900 (has links) (PDF)
In this thesis, a new method is followed to design an active control system which imparts viscoelastic phenomenological damping in an elastic structure. Properties of a hypothetical viscoelastic system are used to design an active feedback controller for an undamped structural system with distributed sensor, actuator and controller. The variational structure is projected on a solution space of a closed-loop system involving a weakly damped structure with distributed sensor and actuator with controller. These controller components assign the phenomenology based on internal strain rate damping parameter of a viscoelastic system to the undamped elastic structure. An elastic cantilever beam with proportional-derivative controller and displacement feedback is considered in all the design formulations. In the first part of the research, a closed-loop control system is designed using two time domain modern control system design methods, pole placement and optimal pole placement, which use viscoelastic damping parameter. Equation of motion of a viscoelastic system is employed to synthesize the desired closed-loop poles. Desired poles are then assigned to an elastic beam with an active controller. Time domain finite element formulation is used without considering actuator-sensor dynamics and the effect of transducer locations. Characteristics of closed-loop system gains are found as a function of desired damping parameter and realization of damping have been analyzed with closed loop system pole positions. The next part consists of a novel frequency domain active control system design to impart desired viscoelastic characteristics, which uses spectral method and the exact dynamic stiffness matrix of the system. In the first case, a sub-optimal local control system for a cantilever beam, with collocated actuator and sensor is designed. In the second case, a closed-loop local controller for an elastic system with non-collocated transducers is designed. Next, a global controller for non-collocated arrangement of sensor-actuator is designed by considering all the degrees-of freedom in the system, which leads to solving an eigenvalue problem. The reason for the failure of the collocated arrangement in global control is also explained. In this novel control system design method transducer dynamics and locations are considered in the formulation. In frequency domain design, the frequency responses of the system show satisfactory performance of the closed-loop elastic system. The closed-loop system is able to reproduce the desired viscoelastic characteristics as targeted in the design. Optimal and sub-optimal system gains are found as functions of transducer locations, transducer properties, excitation frequency and internal strain rate damping parameter of a hypothetical viscoelastic system. Performance of the closed loop system is established by comparing the specific damping capacity of the hypothetical viscoelastic system with that of the closed-loop elastic system. The novel frequency domain method is simple, accurate, efficient and can be extended to complex structures to achieve desired damping. The method can be a better way of designing structures with variable stiffness which has research potential in designing morphing airplanes/spacecrafts. The ultimate goal of this research is that, if this design method is applied to practical applications such as aircraft wings, where vibration is undesirable, one would be able to achieve strength and desired damping characters simultaneously.

Page generated in 0.5521 seconds