• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A NEW PIEZOELECTRIC MICROACTUATOR WITH TRANSVERSE AND LATERAL CONTROL OF HEAD POSITIONING SYSTEMS FOR HIGH DENSITY HARD DISK DRIVES

Han, Younghee 01 January 2005 (has links)
In high density magnetic hard disk drives, both fast track seeking and extremely accurate positioning of the read/write head are required. A new piezoelectric microactuator with transverse and lateral control of the head positioning system for high density hard disk drives is proposed. First, the structure of the new piezoelectric microactuator is illustrated. Design of the new microactuator is based on the axial deformation of piezoelectric elements for lateral motion and the bimorph actuation of piezoelectric elements for transverse motion. Next, a mathematical model of the microactuator system is defined. Static properties associated with the displacement of the system are evaluated and then dynamic system equations of the system are evaluated. Frequency response of the system is studied based on the dynamic system equations of the actuator system. Dynamic properties of the system with a variety of system parameters are evaluated. Finally, the controller design for the actuator is presented. Simulation results show that the new actuator achieves a maximum stroke of displacement of more than 0.2m with servo bandwidth of more than 5 kHz in the lateral direction and the flying height is decreased to less than 6 nm with resonance frequency of more than 100 kHz under the 0.5 % damping assumption. The new piezoelectric microactuator improves performance of high density hard disk drives by increasing servo bandwidth and decreasing flying height.
2

A Design Procedure for Flapping Wings Comprising Piezoelectric Actuators, Driver Circuit, and a Compliant Mechanism

Chattaraj, Nilanjan January 2015 (has links) (PDF)
Flapping-wing micro air vehicle (MAV) is an emerging micro-robotic technology, which has several challenges toward its practical implementation. Inspired by insect flight, researchers have adopted bio-mimicking approach to accomplish its engineering model. There are several methods to synthesize such an electromechanical system. A piezoelectric actuator driven flapping mechanism, being voltage controlled, monolithic, and of solid state type exhibits greater potential than any conventional motor driven flapping wing mechanism at small scale. However, the demand for large tip deflection with constrained mass introduces several challenges in the design of such piezoelectric actuators for this application. The mass constraint restricts the geometry, but applying high electric field we can increase the tip deflection in a piezoelectric actuator. Here we have investigated performance of rectangular piezo-actuator at high electric field. The performance measuring attributes such as, the tip deflection, block force, block moment, block load, output strain energy, output energy density, input electrical energy, and energy efficiency are analytically calculated for the actuator at high electric field. The analytical results suggest that the performance of such an actuator can be improved by tailoring the geometry while keeping the mass and capacitance constant. Thereby, a tapered piezoelectric bimorph cantilever actuator can provide better electromechanical performance for out-of-plane deflection, compared to a rectangular piezoelectric bimorph of equal mass and capacitance. The constant capacitance provides facility to keep the electronic signal bandwidth unchanged. We have analytically presented improvement in block force and its corresponding output strain energy, energy density and energy effi- ciency with tapered geometry. We have quantitatively and comparatively shown the per- formance improvement. Then, we have considered a rigid extension of non-piezoelectric material at the tip of the piezo-actuator to increase the tip deflection. We have an- alytically investigated the effect of thick and thin rigid extension of non-piezoelectric material on the performance of this piezo-actuator. The formulation provides scope for multi-objective optimization for the actuator subjected to mechanical and electrical con- straints, and leads to the findings of some useful pareto optimal solutions. Piezoelectric materials are polarized in a certain direction. Driving a piezoelectric actuator by high electric field in a direction opposite to the polarized direction can destroy the piezo- electric property. Therefore, unipolar high electric field is recommended to drive such actuators. We have discussed the drawbacks of existing switching amplifier based piezo- electric drivers for flapping wing MAV application, and have suggested an active filter based voltage driver to operate a piezoelectric actuator in such cases. The active filter is designed to have a low pass bandwidth, and use Chebyshev polynomial to produce unipolar high voltage of low flapping frequency. Adjustment of flapping frequency by this voltage driver is compatible with radio control communication. To accomplish the flapping-wing mechanism, we have addressed a compatible dis- tributed compliant mechanism, which acts like a transmission between the flapping wing of a micro air vehicle and the laminated piezoelectric actuator, discussed above. The mechanism takes translational deflection at its input from the piezoelectric actuator and provides angular deflection at its output, which causes flapping. The feasibility of the mechanism is investigated by using spring-lever (SL) model. A basic design of the com- pliant mechanism is obtained by topology optimization, and the final mechanism is pro- totyped using VeroWhitePlus RGD835 material with an Objet Connex 3D printer. We made a bench-top experimental setup and demonstrated the flapping motion by actuating the distributed compliant mechanism with a piezoelectric bimorph actuator.
3

SMALL SATELLITE NONCOMMUTATIVE ROTATION SEQUENCE ATTITUDE CONTROL USING PIEZOELECTRIC ACTUATORS

Evans, Joshua L. 01 January 2016 (has links)
Attitude control remains one of the top engineering challenges faced by small satellite mission planning and design. Conventional methods for attitude control include propulsion, reaction wheels, magnetic torque coils, and passive stabilization mechanisms, such as permanent magnets that align with planetary magnetic fields. Drawbacks of these conventional attitude control methods for small satellites include size, power consumption, dependence on external magnetic fields, and lack of full control authority. This research investigates an alternative, novel approach to attitude-control method for small satellites, utilizing the noncommutative property of rigid body rotation sequences. Piezoelectric bimorph actuators are used to induce sinusoidal small-amplitude satellite oscillations on two of the satellites axes. While zero net change occurs on these signaled axes, the third axis can develop an average angular rate. This noncommutative attitude control methodology has several advantages over conventional methods, including scalability, power consumption, and operation outside of Earth's magnetic field. This research looks into the feasibility of such a system, and lays the foundation for a simple control system architecture.
4

Conception et réalisation d’un banc pour l’étude de fiabilité des micros dispositifs piézoélectriques de récupération d’énergie dédiés aux implants cardiaques / Design and realization of a bench for the study of the reliability of micro piezoelectric energy harvesting devices dedicated to cardiac implants

Maaroufi, Seifeddine 30 June 2017 (has links)
Dans le cadre de cette thèse de doctorat, nous présentons la conception et la réalisation d’un banc dédié à l’étude de la fiabilité de structures piézoélectriques et plus précisément des micro-dispositifs de récupération d'énergie destinés aux implants médicaux autonomes actifs (stimulateurs cardiaques de nouvelle génération). Les structure étudiées se présentent sous la forme d’un bimorphe piézoélectrique encastré-libre comportant une masse sismique à leur extrémité. Une bonne compréhension du vieillissement des matériaux et des modes de défaillance mécanique et électrique est essentielle pour ce type de système où la vie du patient au sein duquel est implanté le dispositif est directement mise en jeu. Pour étudier la fiabilité et la durabilité de la partie active du récupérateur, nous proposons d'établir une nouvelle méthodologie de vieillissement accélérée via un banc d'essai dédié où l'environnement et les stimuli peuvent être contrôlés avec précision sur une large période de temps. Une caractérisation électromécanique des structures est périodiquement réalisée via l’extraction d’une série d’indicateurs (force de blocage, raideur, tension en régime harmonique) au sein même du banc tout au long du vieillissement. Il est donc ainsi possible d'identifier les différents modes de défaillance potentiels et d’étudier leurs impacts sur le bon fonctionnement du système. / Within the framework of this PhD we present the design and realization of a bench dedicated to the study of the reliability of piezoelectric structures and more precisely micro-devices of energy harvesting for the new generation of active and autonomous medical implants. The structures studied are in the form of a free-clamped piezoelectric bimorph having a seismic mass at their tip. A good understanding of the aging of the materials and of the mechanical and electrical failure modes is essential for this type of system where the life of the patient implanted by this device is directly involved. To study the reliability and durability of the active part of the harvester, we propose to establish a new accelerated aging methodology via a dedicated test bench where the environment and stimuli can be controlled accurately over a large period of time. An electromechanical characterization of the structures is periodically carried out by the extraction of a series of indicators (blocking force, stiffness, tension in harmonic regime) within the bench throughout the aging process. Therefore it is possible to identify the different potential failure modes and to study their impact on the proper functioning of the system.
5

Dynamický model nelineárního oscilátoru s piezoelektrickou vrstvou / Dynamic model of nonlinear oscillator with piezoelectric layer

Sosna, Petr January 2021 (has links)
Tato diplomová práce je zaměřena na analýzu chování magnetopiezoelastického kmitajícího nosníku. V teoretické části jsou odvozeny diskretizované parametry, které popisují reálnou soustavu jako model s jedním stupněm volnosti. Tento model je následně použit pro kvalitativní i kvantitativní analýzu chování tohoto harvesteru. Frekvenční odezva harmonicky buzeného systému je zkoumána v dvouparametrické nebo tříparametrické analýze v závislosti na amplitudě buzení, elektrické zátěži a vzdálenosti mezi magnety. Posledně zmíněný parametr je v práci tím hlavním, proto je vliv vzdálenosti magnetů zkoumán také s pomocí bifurkačních diagramů. Tyto diagramy byly navíc použity k vytvoření oscilační "mapy", která pro každé zatěžovací podmínky ukazuje, jakou vzdálenost magnetů je třeba nastavit, aby bylo generováno nejvíce energie. Práce je doplněna o ukázky několika jevů, které mohou značně ovlivnit chování systému, pokud se nejdená o čistě harmonické buzení.

Page generated in 0.0629 seconds