• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 254
  • 63
  • 56
  • 42
  • 27
  • 24
  • 7
  • 7
  • 6
  • 6
  • 6
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 632
  • 88
  • 66
  • 49
  • 48
  • 45
  • 42
  • 41
  • 38
  • 38
  • 37
  • 36
  • 34
  • 34
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Effect of Cracking on Lag Bolt Performance

Ramskill, Thomas Edward 16 September 2002 (has links)
This dissertation presents the results of testing to determine the load-slip characteristics of single-shear single lag screw connections subjected to monotonic lateral loading parallel to grain. Of particular importance was the comparison of experimental capacity and 5% offset yield load resistances to load resistances as predicted by the American Forest & Paper Association's (AF&PA) publication General Dowel Equations for Calculating Lateral Connection Values, Technical Report 12 (TR-12). Additionally some other tests were conducted, including fracture, tension strength perpendicular-to-grain, lag screw connection inking, dowel embedment, specific gravity and moisture content. The results for the testing program are presented. Four hundred and forty eight lateral tests were conducted on lag screw connections. Each connection was comprised of a 2 x 6 x 14 in. long wood main member, 1/4 in. thick steel side plate, and a single lag screw. The parameters of interest were specific gravity, lag screw diameter, and pilot hole diameter. Two species of wood, Douglas-fir and spruce-pine-fir, three lag screws diameters, and three pilot hole diameters for each species of wood were implemented. Models were developed to predict lag screw connection capacity and 5% offset yield and are contained herein. Models were based on results from connection and inking tests and mechanical analysis. Recommendation for ASD and LRFD design values were derived from connection test results for connections that used AF&PA's National Design Specification for Wood Construction (NDSb) specified pilot holes. Using fracture mechanics results, work was performed to determine the effective load required to crack and separate fracture surfaces of wood main members due to the installation of lag screws with varying pilot hole diameters. / Ph. D.
322

Active Noise Reduction Versus Passive Designs in Communication Headsets: Speech Intelligibility and Pilot Performance Effects in an Instrument Flight Simulation

Valimont, Robert Brian 08 May 2006 (has links)
Researchers have long known that general aviation (GA) aircraft exhibit some of the most intense and potentially damaging sound environments to a pilot's hearing. Yet, another potentially more ominous result of this noise-intense environment is the masking of the radio communications. Radio communications must remain intelligible, as they are imperative to the safe and efficient functioning of the airspace, especially the airspace surrounding our busiest airports, Class B and Class C. However, the high amplitude, low frequency noise dominating the GA cockpit causes an upward spreading of masking with such inference that it renders radio communications almost totally unintelligible, unless the pilot is wearing a communications headset. Even with a headset, some researchers have stated that the noise and masking effects overcome the headset performance and still threaten the pilot's hearing and overall safety while in the aircraft. In reaction to this situation, this experiment sought to investigate the effects which active noise reduction (ANR) headsets have on the permissible exposure levels (PELs), speech intelligibility, workload, and ultimately the pilot's performance inside the cockpit. Eight instrument-rated pilot participants flew through different flight tasks of varying levels and types of workload embedded in four 3.5 hour flight scenarios while wearing four different headsets. The 3.5 hours were considered long duration due the instrument conditions, severe weather conditions, difficult flight tasks, and the fatiguing effects of a high intensity noise environment. The noise intensity and spectrum in the simulator facility were specifically calibrated to mimic those of a Cessna 172. Speech intelligibility of radio communications was modified using the Speech Transmission Index (STI), while measures of flight performance and workload were collected to examine any relationships between workload, speech intelligibility, performance, and type of headset. It is believed that the low frequency attenuation advantages afforded by the ANR headset decreased the signal-to-noise ratio, thereby increasing speech intelligibility for the pilot. This increase may positively affect workload and flight performance. Estimates of subjective preference and comfort were also collected and analyzed for relevant relationships. The results of the experiment supported the above hypotheses. It was found that headsets which incorporate ANR technology do increase speech intelligibility which has a direct inverse influence on workload. For example, an increase in speech intelligibility is seen with a concomitant decrease in pilot workload across all types and levels of workload. Furthermore, flight task performance results show that the pilot's headset can facilitate safer flight performance. However, the factors that influence performance are more numerous and complex than those that affect speech intelligibility or workload. Factors such as the operational performance of the communications system in the headset, in addition to the ANR technology, were determined to be highly influential factors in pilot performance. This study has concluded that the pilot's headset has received much research and design attention as a noise attenuation device. However, it has been almost completely overlooked as a tool which could be used to facilitate the safety and performance of a general aviation flight. More research should focus on identifying and optimizing the headset components which contribute most to the results demonstrated in this experiment. The pilot's headset is a component of the aviation system which could economically improve the safety of the entire system. / Ph. D.
323

Evaluation of ozone treatment, pilot-scale wastewater treatment plant, and nitrogen budget for Blue Ridge Aquaculture

Sandu, Simonel Ioan 12 October 2004 (has links)
Sustainable tilapia production at Blue Ridge Aquaculture (BRA) is constrained by availability of high quality replacement water. I developed a pilot-scale wastewater treatment system to treat and reuse effluent presently discharged. An initial study was conducted to determine the response of the BRA waste stream to ozone application. Dosages of 6.9, 4.8 and 2.4 g O3 were applied for 30 minutes to 35 L of settled effluent. Optimum ozone dosage and reaction time, ozone transfer efficiency, ozone yield coefficient, degree of pollutant removal, and other ozone and water quality parameters were determined. Most results suggested that the maximum process feasibility limit for ozone contact time was approximately 9 minutes at an applied ozone concentration of 23g/m3 (6.9 g O3 dose). Formation of foam increased solids and COD removal up to three times. Poor removal or accumulation of DOC and TAN was observed, indicating the need for biological treatment following ozonation. Next, I evaluated a pilot station treatment train including sedimentation, microscreen filtration, fluidized bed denitrification, ozonation, aerobic biological oxidation in a trickling filter, and jar-test chemical flocculation. Significant improvements were found regarding solids, COD, cBOD5, NO3--N, TKN, and turbidity. Removal of foam after ozonation improved ozonation efficacy and pollutant removal. A nitrogen budget for the BRA facility was derived, indicating that 35% of the nitrogen applied in feed was assimilated in fish. I evaluated the possible impact of residual inorganic nitrogen forms from treated effluent upon fish in the recirculating systems. I found that less than 1% of the TAN produced would return the recovered stream, and that the existing biological contactors can remove it. Evaluation of TAN fate indicated that 84% was oxidized in biofilters, 14% was oxidized by passive nitrification, and 1% was removed by water exchange. For NO3-N, I determined that 56% was removed by passive denitrification and 44% by daily water exchange. The pilot station design was effective for removing organics and nutrients, and can serve as the basis for scale-up for treating and reusing the entire BRA effluent stream. / Ph. D.
324

Continuous color removal from concentrated dye waste discharges using reducing and oxidizing chemicals: a pilot plant study

Price, Vaneaton 04 August 2009 (has links)
The purpose of this research was to design, fabricate and test a 1 liter per minute pilot plant with a cascading sequence of continuously stirred tank reactors. The object of the research was to chemically decolorize selected reactive-dye bath concentrates resulting from exhaustive dyeing, and to remove metals and DOC using Fenton's Reagent or the reductive chemicals, thiourea dioxide and sodium hydrosulfite. For the Fenton's Reagent studies, ferrous sulfate was premixed with the dye waste concentrate before overflowing to the first reactor. A feedback control system based on color remaining in the discharge was used to regulate reactants added. Transmittance was measured at several wavelengths (590, 540, and 438 nm) and the American Dye Manufacturers Institute (ADMI) value calculated. The results demonstrated that ADMI measurements could not be made on dark solutions (over 3000 ADMI) in the pilot plant and, typically, one wavelength was used for control. DOC removal was used as a means of determining the biological activity in aerated reactors following color removal. The initial pilot plant studies were conducted using Navy 106 jet-dye waste. Reductive pretreatment with thiourea dioxide resulted in 92.2% color removal with color returning upon aeration for an overall color removal of 76.6%. Oxidative pretreatment with Fenton's chemistry resulted in 98.8% color removal with overall color removal after aerobic treatment at 96.8%. Dissolved Organic Carbon (DOC) removal in aerobic treatment improved with oxidative pretreatment relative to reductive pretreatment on Navy 106 jet-dye concentrate. On site operation of the pilot plant on other dye wastes showed color removals above 95% and DOC removals of 38% and 19% for an azo-based red dye waste concentrate and a copper-phthalocyanine-based dye, Ming Jade, respectively. The soluble copper concentration in the Ming Jade was decreased from 19.2 ppm to 4.5 ppm. This corresponded to a 3-fold increase in suspended solids from 0.575 g/L to 1.505 g/L. The results showed that continuous oxidative pretreatment with a 15-minute residence time was controllable and more effective than reductive treatment for color removal. Oxidative pretreatment also decreased the soluble copper concentration in a copper containing waste water, and did not hinder biological activity. / Master of Science
325

Resilient Waveform Design for OFDM-MIMO Communication Systems

Shahriar, Chowdhury M. R. 23 October 2015 (has links)
This dissertation addresses physical layer security concerns, resiliency of the Orthogonal Frequency Division Multiplexing (OFDM) and the Multiple Input Multiple Output (MIMO) systems; the `de-facto' air-interface of most wireless broadband standards including LTE and WiMAX. The major contributions of this dissertation are: 1) developing jamming taxonomy, 2) proposing OFDM and MIMO equalization jamming attacks and countermeasures, 3) developing antijam (AJ) MIMO systems, and 4) designing null space projected overlapped-MIMO radar waveform for spectrum sharing between radar and communications system. First, we consider OFDM systems under various jamming attacks. Previous research is focused on jamming OFDM data transmissions. We focus on energy efficient attacks that can disrupt communication severely by exploiting the knowledge of target waveform. Specifically, these attacks seek to manipulate information used by the equalization algorithm to cause errors to a significant number of symbols, i.e., pilot tones jamming and nulling. Potential countermeasures are presented in an attempt to make OFDM waveform robust and resilient. The threats were mitigated by randomizing the location and value of pilot tones, causing the optimal attack to devolve into barrage jamming. We also address the security aspects of MIMO systems in this dissertation. All MIMO systems need a method to estimate and equalize channel, whether through channel reciprocity or sounding. Most OFDM-based MIMO systems use sounding via pilot tones. Like OFDM attacks, this research introduces MIMO channel sounding attack, which attempts to manipulate pilot tones to skew the channel state information (CSI) at the receiver. We describe methods of designing AJ MIMO system. The key insight is that many of the theoretical concepts learned from transmit beamforming and interference alignment (IA) in MIMO systems can be applied to the field of AJ and robust communications in the presence of jammers. We consider a realistic jamming scenario and provide a `receiver-only' and a transmitter `precoding' technique that allow a pair of two-antenna transceivers to communicate while being jammed by a malicious non-cooperative single-antenna adversary. Finally, we consider designing a collocated MIMO radar waveform, which employs a new MIMO architecture where antenna arrays are allowed to overlap. This overlapped-MIMO radar poses many advantages including superior beampattern and improvement in SNR gain. We combine this radar architecture with a projection-based algorithm that allows the radar waveform to project onto the null space of the interference channel of MIMO communications system, thus enabling the coexistence of radar and communications system. / Ph. D.
326

Design and Implementation of a Pilot Signal Scanning Receiver for CDMA Personal Communication Services Systems

Blankenship, T. Keith III 04 May 1998 (has links)
In cellular and personal communications services (PCS) systems based on code division multiple access (CDMA), a pilot signal is used on the forward link for synchronization, coherent detection, soft handoff, maintaining orthogonality between base stations, and, in the future, position location. It is critical that the percentage of power allocated to the pilot signal transmitted by each base station be fixed properly to ensure the ability of the CDMA network to support subscriber demand. This thesis reports on the design and implementation of a prototype receiver for measuring pilot signals in CDMA PCS systems. Since the pseudonoise (PN) signal of the pilot channel is a priori information, the receiver searches for pilot signals by digitally correlating the received signal with this known, locally generated pilot signal. By systematically changing the phase of this locally generated pilot signal, the receiver scans the received signal to identify all possible signs of pilot signal activity. Large values of correlation indicate the presence of a pilot signal at the particular phase of the locally generated pilot signal. The receiver can also detect multipath components of the pilot signal transmitted from a given base station. One issue associated with this receiver is its ability to keep the signal power within the dynamic range of the analog-to-digital (A/D) converter at its input. This necessitated the design of an automatic gain control (AGC) mechanism, which is digitally implemented in this receiver. Simulation studies were undertaken to assist in the design and implementation of the pilot signal scanning receiver. These simulations were used to quantify how various non-idealities related to the radio frequency (RF) front-end and A/D converter adversely affect the ability of the digital signal processing algorithms to detect and measure pilot signals. Because the period of the pilot signal is relatively long, methods were developed to keep the receiver's update period as small as possible without compromising its detection ability. Furthermore, the high sampling rate required strains the ability of the digital logic to produce outputs at a rate commensurate with real-time operation. This thesis presents techniques that allow the pilot signal scanning receiver to achieve real-time operation. These techniques involve the judicious use of partial correlations and windowing the received signal to decrease the transfer rate from the A/D converter to the digital signal processor. This thesis provides a comprehensive discussion of these and other issues associated with the actual hardware implementation of the pilot signal scanning receiver. / Master of Science
327

User interactions in strategic research: The example of two UK 'Integrated Urban Drainage Pilots'

Sharp, Liz January 2008 (has links)
No / According to Lowe and Phillipson (2006) the traditional binary division into `basic¿ and `applied¿ research, have recently been extended to a new category called `strategic¿ research, signifying research which is both inter-disciplinary and interacts with research users. Sharp and Dixon (2007) have argued that there are different level of strategic research, signifying different levels of interaction, resource sharing, and joint development of outputs. Drawing on this understanding, this paper considers two user-oriented `Integrated Urban Drainage¿ pilot projects conducted during 2006-7, in order to consider what insights these `not-quite¿ research projects can yield about the nature of strategic research. The paper finds that the pilots were similar to other inter-disciplinary research projects ¿ except that they were commissioned and partly managed by practitioners. Common dilemmas, for example about the inter-linkages between work packages and about the extent of stakeholder interaction, highlight the increasingly fluid boundaries between the categories of `policy evaluation¿, `policy pilot¿ and `research project¿. The paper concludes that the concepts of `researcher¿ and `research user¿ might be replaced with a more flexible idea about `research stakeholders¿ whose varied interests in projects require a flexible communication strategy to fulfil a range of needs.
328

Patients' experiences of a community pharmacy-led medicines management service

Bissell, P., Blenkinsopp, Alison, Short, D., Mason, L. January 2008 (has links)
No / Medicines management services provided by community pharmacists have been proposed as one means to ensure that patients receive all the medicines they may benefit from in the English National Health Service. These services may also offer ways of addressing the historic under-utilization of community pharmacists' clinical skills and expertise. Medicines management services differ significantly from the dispensing and medicines sales roles traditionally associated with community pharmacy, particularly in relation to the provision for pharmacists to make recommendations to both patients and doctors about pharmacological treatment and lifestyle management. This paper describes patients' experiences of a medicines management service provided by community pharmacists for people with coronary heart disease, delivered in England. It draws on findings from semistructured, face-to-face interviews with 49 patients recruited from pilot sites delivering the service. Findings suggest that although patients cautiously welcomed the opportunity to consult with a pharmacist about their medicines, they had reservations about them making recommendations about treatment, and many still regarded the doctor as the health professional 'in charge' of their medicines. The implications of these findings are discussed in light of the developing sociological literature on pharmacy and medicines usage.
329

Bacterial diversity in Buruli ulcer skin lesions: Challenges in the clinical microbiome analysis of a skin disease

05 November 2019 (has links)
Yes / Background Buruli ulcer (BU) is an infectious disease caused by Mycobacterium ulcerans and considered the third most prevalent mycobacterial disease in humans. Secondary bacterial infections in open BU lesions are the main cause of pain, delayed healing and systemic illness, resulting in prolonged hospital stay. Thus, understanding the diversity of bacteria, termed the microbiome, in these open lesions is important for proper treatment. However, adequately studying the human microbiome in a clinical setting can prove difficult when investigating a neglected tropical skin disease due to its rarity and the setting. Methodology/Principal findings Using 16S rRNA sequencing, we determined the microbial composition of 5 BU lesions, 3 non-BU lesions and 3 healthy skin samples. Although no significant differences in diversity were found between BU and non-BU lesions, the former were characterized by an increase of Bacteroidetes compared to the non-BU wounds and the BU lesions also contained significantly more obligate anaerobes. With this molecular-based study, we were also able to detect bacteria that were missed by culture-based methods in previous BU studies. Conclusions/Significance Our study suggests that BU may lead to changes in the skin bacterial community within the lesions. However, in order to determine if such changes hold true across all BU cases and are either a cause or consequence of a specific wound environment, further microbiome studies are necessary. Such skin microbiome analysis requires large sample sizes and lesions from the same body site in many patients, both of which can be difficult for a rare disease. Our study proposes a pipeline for such studies and highlights several drawbacks that must be considered if microbiome analysis is to be utilized for neglected tropical diseases.
330

Regional airspace design: a structured systems engineering approach

Fulton, Neale Leslie, Aerospace & Mechanical Engineering, Australian Defence Force Academy, UNSW January 2002 (has links)
There has been almost fifteen years of political controversy surrounding changes to the rules and procedures by which aircraft conduct their flight within regional Australia. Decisions based on a predominately heuristic (rule of thumb) approach to design have had many adverse consequences for the integrity of the proximity warning function. A sound mathematical model is required to establish this function on a mature engineering foundation. To achieve this, the proximity warning function has been investigated as a hybrid-system. This approach recognises the dual nature of the design: that aircraft dynamics give rise to continuous mathematical models while the communication protocols controlling proximity require discrete mathematical approaches. The blending of each aspect has yielded a deeper insight into the operational limitations and failure modes of this function. The presentation of the thesis follows a design thread through the function. It begins with a description of existing standards and implementations. Risk models are then developed. The pilot interface is recognised as a primary design constraint. Mathematical models are then developed to describe the topology of flow, proximity dynamics, and the scheduling constraints associated with visual, voice, and data-link communications required by the proximity warning function. These analyses show that many aspects of design can be bounded by analytical formulae that bring new robustness to the design and resolve some of the misconceptions arising from the often inaccurate perceptions of present airspace operations. Failure modes, unaccounted for in existing designs are found to actually aggravate failure in the very situations in which the airspace design should be robust and should act to prevent collisions. In particular, there are divergences of performance between the demands required by the system design and the ability of the pilot to deliver such performances. In some cases, these failures may be traced to policy decisions such as service between Instrument Flight Rule and Visual Flight Rule category aircraft. On the basis of the conclusions of this research, a formal engineering review of the proximity warning function is required to assure the containment of the likelihood of mid-air collision for all future operations.

Page generated in 0.1384 seconds