Spelling suggestions: "subject:"pilot braining"" "subject:"pilot craining""
11 |
Rozbor leteckých nehod všeobecného letectví ČR v souvislosti s věkovým zastoupením pilotů / Analysis of general aviation accidents of the Czech Republic in relation to age representation pilotsOlšanová, Markéta January 2015 (has links)
The master’s thesis investigates the influence of a pilot‘s age and experience on the probability of aviation accident related to general aviation in the Czech Republic. The results were obtained using statistical analyses of data from aircraft accident final reports. The aim of the thesis is to propose the ways of decreasing the number of accidents caused by the analyzed factors while taking into account the current aviation legislation.
|
12 |
Analýza modelů chování pilota při řízení letu letounu / Analysis of Pilot's Behaviour Models During FlightJirgl, Miroslav January 2017 (has links)
This thesis deals with human – pilot behaviour modelling during a flight in terms of automatic control systems. For these purposes, the introduction to the issue of description and modelling of individual components of the whole pilot – aircraft interaction is presented. Based on that, the simulation models obtained from real measured data are designed. However, the acquisition of the real flight data is quite difficult. Therefore, the flight simulator at Brno University of Defence is used for the purposes of this work. Several experimental measurements were taken using this simulator. These were focused on measuring pilot’s reactions (responses) to visual stimulus with emphasis on obtaining judgements about their current state of training (in terms of dynamic behaviour) as well as attitude to aircraft control. In this phase, two sets of measurements with eight pilots were taken. On average, the pilots had 60 flight hours before the first set of measurements and about 80 flight hours before the second set. The obtained results are analysed using mainly the theory of automatic control approaches in order to evaluate the actual state of pilots’ abilities considering the effects of flight training.
|
13 |
Come Fly with Me (Sustainably) : Pathways to Sustainable General Aviation and Private Pilot TrainingStiebe, Michael January 2022 (has links)
Whereas commercial aviation is attempting to achieve the reduction of its substantial carbon footprint, general aviation’s (GA) climate change contribution is negligibly small, which is why the sector is facing other sustainability challenges mainly entailing the operation of dated technology and aircraft, increasing regulatory constraints, rising costs, noise emissions, and popular discontent, as well as remaining the last mobility sector in the world to still use leaded fuels. Throughout recent years, there have been remarkable sustainability trends in GA as well as heightened efforts to improve its emissions profile (noise, pollutants, CO2) and environmental reputation, for instance by the increased use of electric aircraft, especially for private pilot training. From a sociotechnical perspective, this mixed-methods study highlights current sustainability challenges and trends in GA as well as potential pathways towards more sustainable GA and private pilot training. Eight in-depth semi-structured interviews with Swiss and international GA stakeholders were complemented with a bilingual representative quantitative online survey (N=427) among Swiss GA stakeholders, a comparative CO2 analysis showing the emissions advantages and feasibility limits of supplementing private pilot training with lessons using electric aircraft, as well as participant observation. The data show that most Swiss GA stakeholders have increased environmental awareness and are concerned about sustainability and the environment both, in flight and other activities. Although the majority advocates for sustainable development in GA there are not one but many challenges and obstacles to a more sustainable GA. The largest challenges are the abatement of noise emissions and the facilitation of the leaded aviation gasoline (AVGAS 100LL) phaseout. The most pertinent obstacles towards sustainable GA innovation are said to be bureaucracy, overregulation and reluctance in the civil aviation authorities, high costs, averseness to risk and innovation, as well as a trend of decline in GA activity due to continuous demographic change. No single sustainability pathway but rather a mix of immediate and long-term sustainability measures was identified. Despite its current limitations, electric aviation proves to be one of the most feasible pathways to sustainable private pilot training. For more sustainable GA, the use of more fuel-efficient planes and available unleaded fuels, propeller, and muffler retrofits, as well as is feasible short- and midterm measures. In the long run, electric and hybrid aviation as well as bio- and synfuels are likely to become attractive options for GA. The study shows the importance of sustainable development in GA and private pilot training, not because it will majorly contribute to climate change mitigation, but because it will ensure the improvement of its negative environmental reputation and societal acceptance, which will be vital to ensuring the survival of the GA sector.
|
14 |
A Usability and Learnability Case Study of Glass Flight Deck Interfaces and Pilot Interactions through Scenario-based TrainingDe Cino, Thomas James 01 January 2016 (has links)
In the aviation industry, digitally produced and presented flight, navigation, and aircraft information is commonly referred to as glass flight decks. Glass flight decks are driven by computer-based subsystems and have long been a part of military and commercial aviation sectors. Over the past 15 years, the General Aviation (GA) sector of the aviation industry has become a recent beneficiary of the rapid advancement of computer-based glass flight deck (GFD) systems.
While providing the GA pilot considerable enhancements in the quality of information about the status and operations of the aircraft, training pilots on the use of glass flight decks is often delivered with traditional methods (e.g. textbooks, PowerPoint presentations, user manuals, and limited computer-based training modules). These training methods have been reported as less than desirable in learning to use the glass flight deck interface. Difficulties in achieving a complete understanding of functional and operational characteristics of the GFD systems, acquiring a full understanding of the interrelationships of the varied subsystems, and handling the wealth of flight information provided have been reported. Documented pilot concerns of poor user experience and satisfaction, and problems with the learning the complex and sophisticated interface of the GFD are additional issues with current pilot training approaches.
A case study was executed to explore ways to improve training using GFD systems at a Midwestern aviation university. The researcher investigated if variations in instructional systems design and training methods for learning glass flight deck technology would affect the perceptions and attitudes of pilots of the learnability (an attribute of usability) of the glass flight deck interface. Specifically, this study investigated the effectiveness of scenario-based training (SBT) methods to potentially improve pilot knowledge and understanding of a GFD system, and overall pilot user experience and satisfaction.
Participants overwhelmingly reported positive learning experiences from scenario-based GFD systems flight training, noting that learning and knowledge construction were improved over other training received in the past. In contrast, participants rated the usability and learnability of the GFD training systems low, reporting various problems with the systems’ interface, and the learnability (first-time use) of the complex GFD system. However, issues with usability of the GFD training systems did not reduce or change participant attitudes towards learning and mastering GFD systems; to the contrary, all participants requested additional coursework opportunities to train on GFD systems with the scenario-based flight training format.
|
Page generated in 0.0707 seconds