• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Control disorder for electromagnetic localization in plasmonic devices for nanophotonic application / Désordre contrôlé sur des nanostructures métalliques pour des applications en plasmonique

Ung, Thi phuong lien 20 March 2018 (has links)
Les nanostructures métalliques permettent de confiner la lumière à des échelles sub-longueur d’onde grâce à l'excitation de plasmons de surface. Elles ouvrent la voie à de nombreuses applications que ce soit en imagerie, en élaboration de composants photoniques ou en information quantique. Cette thèse porte sur l’étude de nanostructures métalliques, semi-continues ou constituées par des réseaux de trous au désordre contrôlé, et à leur interaction avec des nanocristaux semi-conducteurs colloïdaux particulièrement photostables. En associant plusieurs approches expérimentales complémentaires (spectroscopie en champ lointain, microscopie de champ proche optique, microscopie avec une sonde active de champ proche, caractérisation par microscopie confocale de l’émission de nanocristaux couplés aux surfaces métalliques), nous avons pu mettre en évidence les caractéristiques spécifiques des modes plasmons de ces différentes structures. Pour les réseaux au désordre contrôlé, nous avons en particulier analysé l’apparition progressive de modes localisés intenses et déterminé l’influence de paramètres tels que l’épaisseur de la couche d’or, le diamètre des trous ou la périodicité initiale du réseau. Les résultats expérimentaux obtenus se sont révélés en très bon accord avec les simulations numériques réalisées par FDTD. / Metallic nanostructures allow to confine light at subwavelength scales by the excitation of surface plasmon. They open the way for many applications in imaging, photonic components development and quantum information. This thesis deals with the study of metallic nanostructures, semi-continuous or based on holes gratings with a controlled disorder, and their interaction with colloidal semiconductor nanocrystals that are very photostable. Combining several complementary experimental approaches (far-field spectroscopy, near-field optical microscopy, near-field active probe microscopy, characterization by confocal microscopy of the emission of nanocrystals coupled to the metallic surfaces), we were able to highlight specific characteristics of the plasmon modes of these different structures. For the gratings with a controlled disorder, we have in particular analyzed the emergence of intense localized modes and determined the influence of parameters such as the thickness of the gold layer, the diameter of the holes or the initial periodicity of the grating. The experimental results are in very good agreement with the numerical simulations carried out by FDTD.
2

Caractérisation de la génération de second harmonique dans des nanostructures plasmoniques / Characterization of the second harmonic generation in plasmonic nanostructures

Ethis de Corny, Maëliss 07 December 2018 (has links)
Les nanostructures métalliques ont la capacité de supporter des résonances de plasmons de surface localisés se caractérisant par une oscillation collective des électrons libres du métal. Ce phénomène, connu pour générer localement un champ électrique intense, peut notamment être exploité afin d'exalter les processus d'optique non-linéaire à l'échelle nanométrique. Au cours de cette thèse, nous nous sommes intéressés au processus de génération de second harmonique (SHG) de nanostructures en aluminium et en or. Tout d'abord, nous avons étudié l'origine du processus non-linéaire et mis en évidence le rôle important joué, dans l'or, par la contribution non-locale, issue des gradients de champ dans le volume de la nanostructure. Ensuite, nous avons montré, en associant un phénomène de double résonance et un accord des modes plasmoniques à l'excitation et à l'émission, qu'il est possible d'exalter fortement la réponse harmonique d'une nanoantenne compacte en aluminium. Dans l'optique d'obtenir une intensité non-linéaire encore plus importante, une stratégie est de coupler ces nanostructures à un nanocristal non-linéaire afin de bénéficier à la fois de la forte exaltation du champ générée par le métal et de la non-linéarité du cristal. Afin d'optimiser l'intensité harmonique générée par ces structures hybrides, disposer de nanocristaux possédant une forte non-linéarité intrinsèque est nécessaire. C'est pourquoi, au cours de cette thèse, nous avons mesuré la réponse harmonique de nanocristaux d'iodates de lantane isolés, afin d'estimer leur potentiel pour intégrer ce type de structure. De plus, un microscope optique en champ proche a été mis en place sur le dispositif expérimental permettant la manipulation de nanocristaux à proximité de structures métalliques. Cette thèse, en apportant de nouveaux éléments pour comprendre et optimiser le processus de SHG dans les nanostructures plasmoniques, offre de nouvelles perspectives pour confectionner des composants optiques efficaces pour la conversion de fréquence à l'échelle nanométrique. / Plasmonic nanostructures have the ability to support localised surface plasmon resonances characterized by a collective oscillation of the free electrons in metal. This phenomenon, know to generate an intense local field, can be used to enhance nonlinear optical processes at the nanoscale level. In this thesis, we have investigated the second harmonic generation (SHG) process in aluminum and gold nanostructures. First, we have studied the origin of this nonlinear process and highlighted the major role played, in gold, by the bulk nonlocal contribution, originating from the field gradients inside the nanostructure volume. Then, we pointed out, by achieving a double resonance regime associated with a plasmonic mode matching at the excitation and emission, the possibility to enhance significantly the harmonic response of compact aluminum nanoantennas. In order to increase even more the nonlinear intensity, an idea is to couple these nanostructures to a nonlinear nanocrystal to benficiate both from the field enhancement provided by the metallic nanoantenna and from the nonlinearity of the nanocrystal. To optimise the harmonic intensity generated by these hybrid structures, have nanocrystals with a strong intrinsic nonlinearity is required. To this end, we have measured the harmonic response of single latanide iodate nanocrystals, in order to evaluate their ability to integrate this type of structure. Moreover, we have implemented a near-field optical microscope used to manipulate nancorystals in the vincinity of metallic nanostructures. This thesis, by bringing new elements to understand and optimise the SHG process in plasmonic nanostructures, provides new perspectives to elaborate efficient optical components to frequency conversion at the nanoscale.

Page generated in 0.0367 seconds