• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 234
  • 16
  • 10
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 325
  • 111
  • 85
  • 73
  • 55
  • 53
  • 50
  • 43
  • 41
  • 41
  • 39
  • 31
  • 30
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Oxo Crater on (1) Ceres: Geological History and the Role of Water-ice

Nathues, A., Platz, T., Hoffmann, M., Thangjam, G., Cloutis, E. A., Applin, D. M., Le Corre, L., Reddy, V., Mengel, K., Protopapa, S., Takir, D., Preusker, F., Schmidt, B. E., Russell, C. T. 04 August 2017 (has links)
Dwarf planet Ceres (empty set similar to 940 km) is the largest object in the main asteroid belt. Investigations suggest that Ceres is a thermally evolved, volatile-rich body with potential geological activity, a body that was never completely molten, but one that possibly partially differentiated into a rocky core and an ice-rich mantle, and may contain remnant internal liquid water. Thermal alteration and the infall of exogenic material contribute to producing a (dark) carbonaceous chondritic-like surface containing ammoniated phyllosilicates. Here we report imaging and spectroscopic analyses of data on the bright Oxo crater derived from the Framing Camera and the Visible and Infrared Spectrometer on board the Dawn spacecraft. We confirm that the transitional complex crater Oxo (empty set similar to 9 km) exhibits exposed surface water-ice. We show that this water-ice-rich material is associated exclusively with two lobate deposits at pole-facing scarps, deposits that also contain carbonates and admixed phyllosilicates. Due to Oxo's location at -4802 m below the cerean reference ellipsoid and its very young age of only 190 ka (1 sigma: +100 ka, -70 ka), Oxo is predestined for ongoing water-ice sublimation.
52

Effects of Latent Heating on Atmospheres of Brown Dwarfs and Directly Imaged Planets

Tan, Xianyu, Showman, Adam P. 30 January 2017 (has links)
The growing number of observations of brown dwarfs (BDs) has provided evidence for strong atmospheric circulation on these objects. Directly imaged planets share similar observations and can be viewed as low-gravity versions of BDs. Vigorous condensate cycles of chemical species in their atmospheres are inferred by observations and theoretical studies, and latent heating associated with condensation is expected to be important in shaping atmospheric circulation and influencing cloud patchiness. We present a qualitative description of the mechanisms by which condensational latent heating influences circulation, and then illustrate them using an idealized general circulation model that includes a condensation cycle of silicates with latent heating and molecular weight effect due to the rainout of the condensate. Simulations with conditions appropriate for typical T dwarfs exhibit the development of localized storms and east-west jets. The storms are spatially inhomogeneous, evolving on a timescale of hours to days and extending vertically from the condensation level to the tropopause. The fractional area of the BD covered by active storms is small. Based on a simple analytic model, we quantitatively explain the area fraction of moist plumes and show its dependence on the radiative timescale and convective available potential energy (CAPE). We predict that if latent heating dominates cloud formation processes, the fractional coverage area of clouds decreases as the spectral type goes through the L/T transition from high to lower effective temperature. This is a natural consequence of the variation of the radiative timescale and CAPE with the spectral type.
53

NO THERMAL INVERSION AND A SOLAR WATER ABUNDANCE FOR THE HOT JUPITER HD 209458B FROM HST /WFC3 SPECTROSCOPY

Line, Michael R., Stevenson, Kevin B., Bean, Jacob, Desert, Jean-Michel, Fortney, Jonathan J., Kreidberg, Laura, Madhusudhan, Nikku, Showman, Adam P., Diamond-Lowe, Hannah 02 December 2016 (has links)
The nature of the thermal structure of hot Jupiter atmospheres is one of the key questions raised by the characterization of transiting exoplanets over the past decade. There have been claims that many hot Jupiters exhibit atmospheric thermal inversions. However, these claims have been based on broadband photometry rather than the unambiguous identification of emission features with spectroscopy, and the chemical species that could cause the thermal inversions by absorbing stellar irradiation at high altitudes have not been identified despite extensive theoretical and observational effort. Here we present high-precision Hubble Space Telescope WFC3 observations of the dayside thermal emission spectrum of the hot Jupiter HD 209458b, which was the first exoplanet suggested to have a thermal inversion. In contrast to previous results for this planet, our observations detect water in absorption at 6.2 sigma confidence. When combined with Spitzer photometry, the data are indicative of a monotonically decreasing temperature with pressure over the range of 1-0.001 bars at 7.7 sigma confidence. We test the robustness of our results by exploring a variety of model assumptions, including the temperature profile parameterization, presence of a cloud, and choice of Spitzer data reduction. We also introduce a new analysis method to determine the elemental abundances from the spectrally retrieved mixing ratios with thermochemical self-consistency and find plausible abundances consistent with solar metallicity (0.06-10 x solar) and carbon-to oxygen ratios less than unity. This work suggests that high-precision spectrophotometric results are required to robustly infer thermal structures and compositions of extrasolar planet atmospheres and to perform comparative exoplanetology.
54

Structure and Evolution of Internally Heated Hot Jupiters

Komacek, Thaddeus D., Youdin, Andrew N. 26 July 2017 (has links)
Hot Jupiters receive strong stellar irradiation, producing equilibrium temperatures of 1000-2500 K. Incoming irradiation directly heats just their thin outer layer, down to pressures of similar to 0.1 bars. In standard irradiated evolution models of hot Jupiters, predicted transit radii are too small. Previous studies have shown that deeper heating-at a small fraction of the heating rate from irradiation-can explain observed radii. Here we present a suite of evolution models for HD 209458b, where we systematically vary both the depth and intensity of internal heating, without specifying the uncertain heating mechanism(s). Our models start with a hot, high-entropy planet whose radius decreases as the convective interior cools. The applied heating suppresses this cooling. We find that very shallow heating-at pressures of 1-10 bars-does not significantly suppress cooling, unless the total heating rate is greater than or similar to 10% of the incident stellar power. Deeper heating, at 100 bars, requires heating at only 1% of the stellar irradiation to explain the observed transit radius of 1.4R(Jup) after 5 Gyr of cooling. In general, more intense and deeper heating results in larger hot-Jupiter radii. Surprisingly, we find that heat deposited at 10(4) bars-which is exterior to approximate to 99% of the planet's mass-suppresses planetary cooling as effectively as heating at the center. In summary, we find that relatively shallow heating is required to explain the radii of most hot Jupiters, provided that this heat is applied early and persists throughout their evolution.
55

HST PanCET Program: A Cloudy Atmosphere for the Promising JWST Target WASP-101b

Wakeford, H. R., Stevenson, K. B., Lewis, N. K., Sing, D. K., López-Morales, M., Marley, M., Kataria, T., Mandell, A., Ballester, G. E., Barstow, J., Ben-Jaffel, L., Bourrier, V., Buchhave, L. A., Ehrenreich, D., Evans, T., García Muñoz, A., Henry, G., Knutson, H., Lavvas, P., Lecavelier des Etangs, A., Nikolov, N., Sanz-Forcada, J. 20 January 2017 (has links)
We present results from the first observations of the Hubble Space Telescope (HST) Panchromatic Comparative Exoplanet Treasury program for WASP-101b, a highly inflated hot Jupiter and one of the community targets proposed for the James Webb Space Telescope (JWST) Early Release Science (ERS) program. From a single HST Wide Field Camera 3 observation, we find that the near-infrared transmission spectrum of WASP-101b contains no significant H2O absorption features and we rule out a clear atmosphere at 13 sigma. Therefore, WASP-101b is not an optimum target for a JWST ERS program aimed at observing strong molecular transmission features. We compare WASP-101b to the well-studied and nearly identical hot Jupiter WASP-31b. These twin planets show similar temperature-pressure profiles and atmospheric features in the near-infrared. We suggest exoplanets in the same parameter space as WASP-101b and WASP-31b will also exhibit cloudy transmission spectral features. For future HST exoplanet studies, our analysis also suggests that a lower count limit needs to be exceeded per pixel on the detector in order to avoid unwanted instrumental systematics.
56

Ultraviolet C ii and Si iii Transit Spectroscopy and Modeling of the Evaporating Atmosphere of GJ436b

Loyd, R. O. Parke, Koskinen, T. T., France, Kevin, Schneider, Christian, Redfield, Seth 12 January 2017 (has links)
Hydrogen gas evaporating from the atmosphere of the hot-Neptune GJ436b absorbs over 50% of the stellar Lya emission during transit. Given the planet's atmospheric composition and energy-limited escape rate, this hydrogen outflow is expected to entrain heavier atoms such as C and O. We searched for C and Si in the escaping atmosphere of GJ436b using far-ultraviolet Hubble Space Telescope COS G130M observations made during the planet's extended H I transit. These observations show no transit absorption in the C II 1334,1335 angstrom and Si III 1206 angstrom lines integrated over [-100, 100] km s(-1), imposing 95% (2 sigma) upper limits of 14% (C II) and 60% (Si III) depth on the transit of an opaque disk and 22% (C II) and 49% (Si III) depth on an extended highly asymmetric transit similar to that of H I Ly alpha. C+ is likely present in the outflow according to a simulation we carried out using a spherically symmetric photochemical-hydrodynamical model. This simulation predicts an similar to 2% transit over the integrated bandpass, consistent with the data. At line center, we predict the C II transit depth to be as high as 19%. Our model predicts a neutral hydrogen escape rate of 1.6 x 10(9) g s(-1) (3.1 x 10(9) g s(-1) for all species) for an upper atmosphere composed of hydrogen and helium.
57

Statistical analyses of extrasolar planets and other close companions to nearby stars.

Grether, Daniel Andrew, Physics, Faculty of Science, UNSW January 2006 (has links)
We analyse the properties of extrasolar planets, other close companions and their hosts. We start by identifying a sample of the detected extrasolar planets that is minimally affected by the selection effects of the Doppler detection method. With a simple analysis we quantify trends in the surface density of this sample in the Msini-period plane. A modest extrapolation of these trends puts Jupiter in the most densely occupied region of this parameter space, thus suggesting that Jupiter is a typical massive planet rather than an outlier. We then examine what fraction of Sun-like (~ FGK) stars have planets. We find that at least ~25% of stars possess planets when we limit our analysis to stars that have been monitored the longest and whose low surface activity allow the most precise radial velocity measurements. The true fraction of stars with planets may be as large as ~100%. We construct a sample of nearby Sun-like stars with close companions (period < 5 years). By using the same sample to extract the relative numbers of stellar, brown dwarf and planetary companions, we verify the existence of a very dry brown dwarf desert and describe it quantitatively. Approximately 16% of Sun-like stars have close companions more massive than Jupiter: 11% +- 3% are stellar, <1% are brown dwarf and 5% +- 2% are giant planets. A comparison with the initial mass function of individual stars and free-floating brown dwarfs, suggests either a different spectrum of gravitational fragmentation in the formation environment or post-formation migratory processes disinclined to leave brown dwarfs in close orbits. Finally we examine the relationship between the frequency of close companions and the metallicity of their Sun-like hosts. We confirm and quantify a ~4 sigma positive correlation between host metallicity and planetary companions. In contrast we find a ~2 sigma anti-correlation between host metallicity and the presence of a stellar companion. Upon dividing our sample into FG and K sub-samples, we find a negligible anti-correlation in the FG sub-sample and a ~3 sigma anti-correlation in the K sub-sample. A kinematic analysis suggests that this anti-correlation is produced by a combination of low-metallicity, high-binarity thick disk stars and higher-metallicity, lower-binarity thin disk stars.
58

Microwave opacity of phosphine : application to remote sensing of the atmospheres of the outer planets

Hoffman, James Patrick 05 1900 (has links)
No description available.
59

Late-stage accretion and habitability of terrestrial planets /

Raymond, Sean Neylon, January 2005 (has links)
Thesis (Ph. D.)--University of Washington, 2005. / Vita. Includes bibliographical references (p. 166-174).
60

The Complete Transmission Spectrum of WASP-39b with a Precise Water Constraint

Wakeford, H. R., Sing, D. K., Deming, D., Lewis, N. K., Goyal, J., Wilson, T. J., Barstow, J., Kataria, T., Drummond, B., Evans, T. M., Carter, A. L., Nikolov, N., Knutson, H. A., Ballester, G. E., Mandell, A. M. 20 December 2017 (has links)
WASP-39b is a hot Saturn-mass exoplanet with a predicted clear atmosphere based on observations in the optical and infrared. Here, we complete the transmission spectrum of the atmosphere with observations in the near-infrared (NIR) over three water absorption features with the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) G102 (0.8-1.1 mu m) and G141 (1.1-1.7 mu m) spectroscopic grisms. We measure the predicted high-amplitude H2O feature centered at 1.4 mu m and the smaller amplitude features at 0.95 and 1.2 mu m, with a maximum water absorption amplitude of 2.4 planetary scale heights. We incorporate these new NIR measurements into previously published observational measurements to complete the transmission spectrum from 0.3 to 5 mu m. From these observed water features, combined with features in the optical and IR, we retrieve a well constrained temperature T-eq = 1030(20)(+30) K, and atmospheric metallicity 151(46) (+48) solar, which is relatively high with respect to the currently established mass-metallicity trends. This new measurement in the Saturn-mass range hints at further diversity in the planet formation process relative to our solar system giants.

Page generated in 0.0495 seconds