• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design of a Monitoring System for a Plasma Cleaning Machine

Fooks, Terry M. (Terry Max) 05 1900 (has links)
Plasma cleaning is the most effective dry process to remove surface contaminates from a SAW (Surface Acoustical Wave) device. Consistent gas pressures, flows, and good electrical connections between the chamber shelves are necessary for the process to function predictably. In addition, operation of the monitoring system must be transparent to the plasma cleaning unit. This thesis describes a simple solution to the complex problem of monitoring a plasma cleaning system. The monitoring system uses the LabVIEW® G programming language and hardware, both products of National Instruments, Inc.®, to monitor critical parameters necessary to achieve a consistent process when cleaning these devices.
2

A Study of the Influence of Plasma Cleaning Process on Mechanical and Electrical Characteristics of Gold, Aluminum and Platinum Pads

Huang, Han-Peng 10 September 2008 (has links)
To improve the wire bondability, interfacial adhesion and popcorn cracking resistance in the packaging processing of IC and MEMS chips, this thesis utilized oxygen and helium plasmas to modify and clean the surface of metal pads. The influences of the plasma cleaning time, metal pad materials and wire bonding time/temperature/power on the strength of wire bonding were investigated. Two different wire materials (Al wire with 32 £gm in diameter and Au wire with 25 £gm in diameter) were bonded on the surface of Al, Au and Pt metal pads using a commercial ultrasonic wire bonder (SPB-U688), respectively. The pull strength detection of the implemented micro joints is characterized by an accurate pull strength testing system (Dage SERIES-4000). Based on hundred measurement results, this research has three conclusions described as follows. (I) The pull strength of Au pad is higher than that of Al and Pt pads no matter with the plasma cleaning process or not. The maximum pull strength (12.286 g) can be achieved as the surface of Au pad was modified by the helium plasma for 180 seconds. (II) Helium plasma cleaned wafer can obtain larger improvement of pull strength than that of the oxygen plasma under the same plasma time. However, this result can not be concluded in Al and Pt pads. (III) The optimized wire bonding time/power of the Au, Al and Pt pads are 0.07 s/2.1, 0.05 s/0.6 W and 0.03 s/2.7 W, respectively.
3

Použití kovových a polovodičových nanostruktur pro biodetekci / Application of metal and semiconductor nanostructures for biodetection

Kejík, Lukáš January 2015 (has links)
The master’s thesis deals with two applications of gold discoidal nanostructures exhibiting plasmon resonance for biodetection. The first approach considers the detection of changes in the phase on plasmonic antennas using coherence-controlled holography microscope. It was found that the steepness of the phase is increasing with the illumination wavelength when plasmon resonance is excited in larger antennas. The sensitivity of the phase to refractive-index changes of the surrounding media was observed when the largest response was given by antennas in resonance with wavelength of illumination. Next part deals with plasmon resonance detection by means of optical spectroscopy combined with voltametry which characterizes the electrochemical activity. Changes in resonance wavelength induced by the presence of SSC buffer were observed, although this influence seems to diminish in time. Conducted experiments have also shown that oxygen-plasma cleaning is not suitable for sample surface cleaning because of oxidation of metals including gold as well.
4

Návrh a testování vhodné metodiky pro čištění povrchů preparátů in situ pro elektronovou mikroskopii pomalými elektrony / Design and Testing of methodology for in-situ sample cleaning for low voltage electron microscopy

Rudolfová, Zdena January 2012 (has links)
This thesis concentrates on the methodology of semiconductor samples preparation for low voltage scanning electron microscopy. In the first part a detailed theory of sample imaging using electron beam and difference between classical scanning electron microscopy (SEM) and low voltage scanning electron microscopy (LVSEM) is described. It is given a description of a contrast formation in SEM and LVSEM and theories describing a contrast formation of differently doped semiconductors. The second part contains experimental data. The advantages and disadvantages of cleavage and focused ion beam (FIB) milling as sample preparation techniques are discussed. FIB was found as the best method for sample preparation for the analysis of precisely defined location on the sample. It is necessary to use the lowest possible FIB accelerating voltage for final polishing, ideally 1 kV.
5

Improvement of carbon nanotube-based field-effect transistors by cleaning and passivation

Tittmann-Otto, Jana 16 October 2020 (has links)
Ever since their discovery in 1991, carbon nanotubes are of great interest to the scientific community due to their outstanding optical, mechanical and electrical properties. Considering their impressive properties, as for instance the high current carrying capability and the possibility of ballistic charge transport, carbon nanotubes are a desired channel material in field-effect transistors, especially with respect to high frequency communication electronics. Thus, many scientific studies on CNT-based field-effect transistors have been published so far. But despite the successful verification of excellent individual electric key values, corresponding experiments are mostly performed under synthetic conditions (considering e.g. temperature or gas atmosphere), which are not realizable during realistic application scenarios. Furthermore, technologically relevant factors like homogeneity, reproducibility and yield of functioning devices are often subordinated to the achievement of a single electric record value. Hence, this work focuses on the development of a fabrication technology for carbon nanotube field-effect transistors, that takes those factors into account. Thereby, this work expands the state of the art by introduction and statistical assessment of two cleaning processes: a) wet chemical removal of surfactant residues (sodium dodecylsulfate) from CNTs, integrated using the dielectrophoretic approach, by investigation and comparison of four procedures (de-ionized water, HNO3, oDCB, Ethanol); b) the reduction of process-related substrate contaminations by application of an oxygen plasma. Beyond that, the passivation of the final, working devices is developed further, as their typical definition as diffusion barrier is expanded by the reduction of parasitic capacitances in the transistor. In this context, two so far barely considered materials, hydrogen silsesquioxane and Xdi-dcs, a polymer mixture of poly(vinylphenol) and polymethylsilsesquioxane, are investigated and assessed. The novelty of the Xdi-dcs mixture causes the necessity of fundamental considerations on controllable etching procedures and resulting adaptions of the technological fabrication sequence.:Bibliographic description 3 List of abbreviations 10 List of symbols 10 1 Introduction 13 2 Basics of carbon nanotubes 15 2.1 Structural fundamentals 15 2.1.1 Hybridization of carbon 15 2.1.2 Structure of carbon nanotubes 17 2.2 Electronic properties 19 2.2.1 Band structure of graphene 19 2.2.2 Band structure of carbon nanotubes 20 2.2.3 Electronic transport in CNTs 22 2.3 Procedures for CNT integration 23 2.3.1 Growth by chemical vapor deposition 24 2.3.2 Transfer techniques 24 2.3.3 Dispersion-related integration procedures 25 2.4 Interaction of CNT and surfactant 28 3 Basics of CNT field-effect transistors 31 3.1 Principle of operation of conventional FETs 31 3.2 Distinctive features of CNT-based FETs 32 3.2.1 Metal - semiconductor contact 33 3.2.2 Linearity 38 3.3 Performance determining factors 41 3.3.1 Device architecture 41 3.3.2 Contact geometry 46 3.3.3 Other transistor dimensions 48 3.3.4 CNT-related characteristics 49 3.4 Hysteresis in transfer characteristics 51 3.4.1 Definition of hysteresis 51 3.4.2 Origins of hysteresis 52 3.4.3 Appearance of hysteresis 53 3.5 Passivation 56 3.5.1 Requirements 56 3.5.2 Importance of pre-treatments and process conditions 57 3.5.3 Overview of established passivation materials 58 4 Experimental work 63 4.1 Transistor design 63 4.2 Technology flow 66 4.3 Experimental procedures 71 4.3.1 Procedures for dissolution of SDS 71 4.3.2 Plasma treatment against surface contaminations 72 4.3.3 Evaluation of diffusion barriers 72 4.4 Instrumentation and characterization 74 4.4.1 Dielectrophoresis instrumentation 74 4.4.2 Topographical Characterization 74 4.4.3 Chemical characterization 75 4.4.4 Electrical characterization 76 5 Reduction of hysteresis 77 5.1 Removal of surfactant molecules from CNTs 77 5.1.1 Influence on molecule and CNT chemistry 78 5.1.2 Effect on transistor performance 80 5.2 Plasma-assisted removal of substrate contaminations 87 5.2.1 Influence on substrate surface 88 5.2.2 Effect on transistor performance 92 6 Passivation 97 6.1 Protection against environmental effects 97 6.1.1 Alterability of unpassivated CNT-FETs 98 6.1.2 Effects of O2 exclusion by dense passivation 99 6.1.3 Intentional doping using Y2O3 101 6.2 Passivation considering electrostatic aspects 106 6.2.1 Integration of Xdi-dcs as novel passivation 107 6.2.2 Comparison of two spin-coated dielectrics 111 6.3 Potential of double-layer approaches 113 6.3.1 Evaluation of the gas barrier performance 113 6.3.2 Influence on the transistor behavior 116 7 Summary and Outlook 121 Danksagung 127 Appendix 129 Bibliography 137 List of figures 156 List of tables 161 Selbstständigkeitserklärung 163 8 Thesen 165 9 Curriculum vitae 169 / Bereits seit ihrer Entdeckung 1991 sind Kohlenstoffnanoröhren, aufgrund ihrer herausragenden optischen, mechanischen und elektrischen Eigenschaften, für die wissenschaftliche Community von großem Interesse. Ihre Verwendung als Kanalmaterial in Feld-Effekt Transistoren ist in Anbetracht ihrer außergewöhnlichen Eigenschaften, wie z. B. die hohe Stromtragfähigkeit, sowie die Möglichkeit des ballistischen Transports von Ladungsträgern besonders für die hochfrequente Kommunikationselektronik erstrebenswert. Dementsprechend viele wissenschaftliche Arbeiten befassen sich mit der Erforschung von auf Kohlenstoffnanoröhren basierenden Transistoren. Doch trotz des erfolgreichen Nachweises ausgezeichneter Werte für viele individuelle elektrische Kenngrößen, finden entsprechenden Experimente zumeist unter anwendungsfernen Bedingungen bezüglich Temperatur bzw. Gasatmosphäre statt. Darüber hinaus werden dem Erreichen eines elektrischen Rekordwertes oft technologisch relevante Größen wie Homogenität, Reproduzierbarkeit und Ausbeute an funktionsfähigen Bauteilen untergeordnet. Der Fokus dieser Arbeit liegt daher auf der Erarbeitung einer Technologie zur Herstellung Kohlenstoffnanoröhrenbasierter Feld-Effekt Transistoren, unter Berücksichtigung dieser Aspekte. Dabei erweitert diese Arbeit den Stand der Technik durch die Einführung und statistische Beurteilung zweier Reinigungsprozesse: a) der nasschemischen Beseitigung von Tensidresten (Natriumdodecylsulfat) an mittels Dielektrophorese integrierten CNTs, wobei insgesamt vier Prozeduren (de-ionisiertes Wasser, HNO3, oDCB, Ethanol) betrachtet und miteinander verglichen wurden; b) der Beseitigung von prozessbedingten Substratkontaminationen durch ein Sauerstoffplasma. Darüber hinaus wird die Passivierung der funktionsfähigen Bauelemente weiterentwickelt, indem ihre typische Definition als Diffusionsbarriere um den Aspekt der Verringerung parasitärer Kapazitäten im Transistor erweitert wird. In diesem Zusammenhang werden mit Wasserstoff-Silsesquioxane und Xdi-dcs, einem Polymergemisch aus Poly(vinylphenol) und Polymethylsilsesquioxane, zwei bislang wenig beachtete Materialien, untersucht und bewertet. Die Neuheit des Xdi-dcs Gemisches macht dabei fundamentale Untersuchungen zur Strukturierbarkeit und entsprechende technologische Anpassungen im Gesamtablauf nötig.:Bibliographic description 3 List of abbreviations 10 List of symbols 10 1 Introduction 13 2 Basics of carbon nanotubes 15 2.1 Structural fundamentals 15 2.1.1 Hybridization of carbon 15 2.1.2 Structure of carbon nanotubes 17 2.2 Electronic properties 19 2.2.1 Band structure of graphene 19 2.2.2 Band structure of carbon nanotubes 20 2.2.3 Electronic transport in CNTs 22 2.3 Procedures for CNT integration 23 2.3.1 Growth by chemical vapor deposition 24 2.3.2 Transfer techniques 24 2.3.3 Dispersion-related integration procedures 25 2.4 Interaction of CNT and surfactant 28 3 Basics of CNT field-effect transistors 31 3.1 Principle of operation of conventional FETs 31 3.2 Distinctive features of CNT-based FETs 32 3.2.1 Metal - semiconductor contact 33 3.2.2 Linearity 38 3.3 Performance determining factors 41 3.3.1 Device architecture 41 3.3.2 Contact geometry 46 3.3.3 Other transistor dimensions 48 3.3.4 CNT-related characteristics 49 3.4 Hysteresis in transfer characteristics 51 3.4.1 Definition of hysteresis 51 3.4.2 Origins of hysteresis 52 3.4.3 Appearance of hysteresis 53 3.5 Passivation 56 3.5.1 Requirements 56 3.5.2 Importance of pre-treatments and process conditions 57 3.5.3 Overview of established passivation materials 58 4 Experimental work 63 4.1 Transistor design 63 4.2 Technology flow 66 4.3 Experimental procedures 71 4.3.1 Procedures for dissolution of SDS 71 4.3.2 Plasma treatment against surface contaminations 72 4.3.3 Evaluation of diffusion barriers 72 4.4 Instrumentation and characterization 74 4.4.1 Dielectrophoresis instrumentation 74 4.4.2 Topographical Characterization 74 4.4.3 Chemical characterization 75 4.4.4 Electrical characterization 76 5 Reduction of hysteresis 77 5.1 Removal of surfactant molecules from CNTs 77 5.1.1 Influence on molecule and CNT chemistry 78 5.1.2 Effect on transistor performance 80 5.2 Plasma-assisted removal of substrate contaminations 87 5.2.1 Influence on substrate surface 88 5.2.2 Effect on transistor performance 92 6 Passivation 97 6.1 Protection against environmental effects 97 6.1.1 Alterability of unpassivated CNT-FETs 98 6.1.2 Effects of O2 exclusion by dense passivation 99 6.1.3 Intentional doping using Y2O3 101 6.2 Passivation considering electrostatic aspects 106 6.2.1 Integration of Xdi-dcs as novel passivation 107 6.2.2 Comparison of two spin-coated dielectrics 111 6.3 Potential of double-layer approaches 113 6.3.1 Evaluation of the gas barrier performance 113 6.3.2 Influence on the transistor behavior 116 7 Summary and Outlook 121 Danksagung 127 Appendix 129 Bibliography 137 List of figures 156 List of tables 161 Selbstständigkeitserklärung 163 8 Thesen 165 9 Curriculum vitae 169

Page generated in 0.0848 seconds