• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 423
  • 165
  • 56
  • 29
  • 19
  • 16
  • 11
  • 10
  • 10
  • 7
  • 6
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 851
  • 626
  • 437
  • 139
  • 125
  • 113
  • 113
  • 102
  • 87
  • 82
  • 80
  • 78
  • 76
  • 66
  • 64
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

An examination of the kintetic [sic], structural, and biological effects of zinc on lactogenic cytokine interaction with the human prolactin receptor

Voorhees, Jeffrey L., January 2008 (has links)
Thesis (Ph. D.)--Ohio State University, 2008. / Title from first page of PDF file. Includes vita. Includes bibliographical references (p. 110-118).
72

Biossensor óptico para Candida albicans baseado em ressonância de plasmon localizado

NEVES, Wendell Wons 23 April 2015 (has links)
Submitted by Isaac Francisco de Souza Dias (isaac.souzadias@ufpe.br) on 2016-03-29T17:35:36Z No. of bitstreams: 5 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Monografia wendell.pdf: 1808073 bytes, checksum: e9d8afb74ac6d7bcafeb0dda6ba6bba8 (MD5) Monografia wendell.pdf: 1808073 bytes, checksum: e9d8afb74ac6d7bcafeb0dda6ba6bba8 (MD5) Monografia wendell.pdf: 1808073 bytes, checksum: e9d8afb74ac6d7bcafeb0dda6ba6bba8 (MD5) Monografia wendell.pdf: 1808073 bytes, checksum: e9d8afb74ac6d7bcafeb0dda6ba6bba8 (MD5) / Made available in DSpace on 2016-03-29T17:35:36Z (GMT). No. of bitstreams: 5 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Monografia wendell.pdf: 1808073 bytes, checksum: e9d8afb74ac6d7bcafeb0dda6ba6bba8 (MD5) Monografia wendell.pdf: 1808073 bytes, checksum: e9d8afb74ac6d7bcafeb0dda6ba6bba8 (MD5) Monografia wendell.pdf: 1808073 bytes, checksum: e9d8afb74ac6d7bcafeb0dda6ba6bba8 (MD5) Monografia wendell.pdf: 1808073 bytes, checksum: e9d8afb74ac6d7bcafeb0dda6ba6bba8 (MD5) Previous issue date: 2015-04-23 / CAPES / A frequência de infecções hospitalares por fungos patogênicos tem aumentado substancialmente nas últimas décadas, acarretando altos níveis de mortalidade que atingem até 60% dos óbitos, frequentes em pacientes graves internados em Unidades de Terapia Intensiva. Testes específicos para diagnóstico de septicemia por Candida albicans possuem altos custos e necessitam um longo tempo para a obtenção de resultados. Diante desse quadro e considerando a necessidade da constante busca por alternativas no diagnóstico de septicemias por Candida albicans, nesse trabalho foi desenvolvido e avaliado uma nova plataforma de sensoriamento para um imunossensor óptico, baseado em Ressonância Localizada de Plasmon. Ressonância de Plasmon corresponde a oscilação coletiva dos elétrons de condução em resposta à excitação óptica promovida pela aplicação de um campo eletromagnético externo. A plataforma de sensoriamento corresponde a uma lâmina de vidro com nanopartículas de prata aderidas em sua superfície e funcionalizadas com anticorpos monoclonais anti-candida da classe das imunoglobulinas IgG. As nanopartículas utilizadas foram avaliadas por microscopia eletrônica de transmissão e espectroscopia de absorção, indicando a presença de nanoestruturas com diâmetro médio de 15 nm. Moléculas de cisteamina foram utilizadas como ligantes no processo de funcionalização de anticorpos e glicina foi explorada como bloqueadores dos sítios não funcionalizados da plataforma. Os experimentos com diferentes concentrações de anticorpos foram realizados em quadruplicadas. Foi observado que quando adicionada cisteamina, glicina e anticorpos o pico de ressonância de Plasmon do sistema sofre um deslocamento para a região vermelha do espectro. Verificou-se deslocamentos do pico de Plasmon de até 30 nm. Na avaliação da plataforma como sensor de antígeno de Candida albicans, a detecção de diferentes concentrações de antígeno foi demonstrada. Plataformas de sensoriamento foram imersas em solução de PBS contendo antígenos nas alíquotas de 50 ng/mL, 100 ng/mL, 200 ng/mL e 300 ng/mL, por um período de 1 hora, seguido de lavagem com água MiliQ. Os resultados mostram a capacidade do sistema em identificar alíquotas maiores que 50 ng/mL de antígeno de Candida albicans, indicando a possibilidade do uso da plataforma desenvolvida como imunossensor para Candida. / The frequency of hospital infections by pathogenic fungi has increased substantially in recent decades, leading to high levels of mortality reaching up to 60% of deaths, common in critically ill patients in intensive care units. Specific tests for the diagnosis of sepsis due to Candida albicans have high cost and require a long time to obtain results. Given this situation and considering the need for constant search for alternatives in the diagnosis of septicemia by Candida albicans, this work was developed and evaluated a new sensing platform for an optical immunosensor based on Resonance Localized Plasmon. Plasmon resonance corresponds to collective oscillation of conduction electrons in response to optical excitation promoted by the application of an external electromagnetic field. The sensing platform corresponds to a glass slide with nanoparticles of silver adhered on its surface and functionalized with monoclonal anti-candida antibodies of the IgG class of immunoglobulins. The nanoparticles used were evaluated by transmission electron microscopy and absorption spectroscopy, indicating the presence of nanostructures with an average diameter of 15 nm. Cysteamine molecules were used as ligands in the antibodies functionalization process and glycine as blockers of non-functionalized sites of the platform. Experiments with different concentrations of antibodies were performed in quadruplicate. It was observed that when added cysteine, glycine peak and antibodies specific Plasmon resonance is shifted to the red region of the spectrum. Peak shifts were found to Plasmon up to 54 nm. In the evaluation of the platform as a Candida albicans antigens sensor different antigen concentrations was demonstrated. The sensing platforms were immersed in PBS solution containing dilutions of antigens in 50 ng/mL, 100 ng/mL, 200 ng/mL to 300 ng/mL for a period of 1 hour, followed by washing with MilliQ water. The results show the system ability to identify higher dilutions than 50 ng/mL of Candida albicans antigen, indicating the possibility of the use of the platform as developed immunosensor for Candida.
73

Exciton polariton modes in nanostructures

Gentile, Martin James January 2016 (has links)
In this thesis, original theoretical and numerical investigations into the interaction of light with excitonic nanostructures are presented, in a bid to demonstrate that excitonic nanostructures are viable alternatives to the use of plasmonic nanostructures where electric field enhancement and confinement are sought. In particular, the field enhancement and confinement around excitonic nanostructures on resonance is shown to be comparable if not in excess of that around noble metal nanoparticles such as gold and silver. These excitonic modes, when set in the context of a core-shell geometry, are shown to offer tunability through nanoparticle design and through the index of the environment. In addition, hybrid `hyperbolic' and `plexcitonic' modes are shown to offer similar properties in metallic-excitonic nanostructures. Altogether, these excitonic and hybrid excitonic modes are shown to have potential in nanophotonic applications.
74

Coupling of localised plasmon resonances

Thackray, Benjamin David January 2014 (has links)
Plasmon resonances have attracted a lot of recent research interest for their potential applications, including bio-sensing, sub-wavelength optics, negative refractive index metamaterials and their ability to produce massively enhanced electromagnetic fields. Localised surface plasmon resonances (LSPR) in metallic nanostructures can offer large electromagnetic field enhancements, and nanometre-scale localisation of electric fields. Their resonance wavelengths and properties can be tuned by variation of the nanostructure geometry and are sensitive to environmental refractive index. Coupling of localised plasmon resonances can: Create new hybrid modes that cannot be supported by individual nanostructures, overcome some of the limitations of individual LSPR, and open up possibilities for new applications and active control of plasmon resonances. This thesis contains results from samples exploiting near-field, far-field and resistive coupling of localised plasmon resonances to create novel resonance modes that may make them suitable for important applications. Firstly results are presented from samples exhibiting strong collective plasmon resonances at normal incidence, which could be used to improve the spatial resolution of, miniaturise and add new functionality to highly sensitive surface plasmon resonance based approaches to bio-sensing. A very high bio-sensing figure of merit is calculated for the nanostructure arrays fabricated. Results are also presented from samples designed to produce the highest quality factor resonances possible when excited with light at grazing incidence. The highest resonance quality factors measured were conservatively estimated to be >210, which to our knowledge are the highest values of quality factor measured in diffraction coupled arrays at the resonance wavelengths around 1.5 μm. Evidence for the existence of a presently largely unrecognised resistive coupling mechanism is also presented from an array of gold nanostripes covered with a graphene layer. If further work is successful, this could allow extremely rapid modulation of theoptical properties of a plasmonic array by application of gate voltage to the graphenelayer. Finally an improvement to the fabrication procedure for established near-field coupled composite plasmonic nanostructures that create a cascaded electromagnetic field enhancement effect is presented.
75

Effects of the adenosine A2A receptor C-terminus on ligand binding, stability, and downstream signaling

January 2019 (has links)
archives@tulane.edu / G protein-coupled receptors (GPCRs) are the largest family of proteins in humans and are expressed widely throughout the body. GPCRs consist of seven-transmembrane helices that bind extracellular ligands to initiate intracellular downstream signaling via interaction with G proteins, and function in many short and long-term responses in the body, including taste, immune function, and sugar sensing. Extracellular binding and the coupled downstream signaling pathway means that GPCRs are ideal drug targets for many diseases, making them of great interest to the pharmaceutical industry. Some GPCRs have been crystallized in an effort to better elucidate the structure-function relationship to aid in the design of novel therapeutics. The adenosine A2A receptor (A2AR) is a GPCR that has been crystallized bound to agonist, antagonist, and G protein. Although these crystal structures are informative in regards to A2AR structure when associated with binding partners, all current crystal structures truncate nearly 100 amino acids of the C-terminus. As a crystallization strategy, this truncation makes sense considering the C-terminus is long and unstructured. However, truncating roughly 25% of the protein, as well as making other point mutations calls into question the authenticity of the crystal structures in reflecting functional receptor and thus their potential value for therapeutic design. Beyond structural studies, biophysical characterization of drug binding to receptors in vitro to predict efficacy in vivo has shifted away from measures of affinity and selectivity and towards determination of kinetic rates. Kinetic rate constants in combination with affinity and drug residence time are thought to be better predictors of drug behavior in vivo. For these reasons, this thesis focuses on experiments to characterize A2AR kinetic rate constants. Previously, our lab showed that truncating the A2AR C-terminus reduced downstream cAMP signaling in mammalian cells, although where the effect on the signaling pathway occurred was not determined. Here, we report that truncation of the C-terminus ablates receptor association to Gαs, the first step in signaling. In this work, A2AR ligand binding kinetics, stability, and association to Gαs are characterized to better delineate the importance of interactions between receptor and stimuli in a way that is impactful to drug design. / 1 / Kirsten Swonger Koretz
76

Local spectroscopic properties of certain plasmonic and plexcitonic systems

Ugwuoke, Luke C. 06 December 2020 (has links)
In the framework of the quasi-static approximation (QSA), some theoretical studies were conducted within the local response approximation (LRA). In these studies, certain plasmonic and plexcitonic systems were proposed, and their spectroscopic properties investigated. The QSA allows us to study metal nanoparticles (MNPs) and inter-particle distances that are small compared to the wavelength of light in the medium surrounding the MNPs, while the LRA enables us to utilize the bulk dielectric response of the metal in consideration. We have studied the following properties in detail: localized surface plasmon resonances (LSPRs), plasmon-induced transparency (PIT), and plasmon-enhanced fluorescence (PEF), while exciton-induced transparency (EIT) has only been partly studied. LSPR and PIT are properties of plasmonic systems while PEF and EIT are properties of plexcitonic systems. Both PIT and EIT are forms of electromagnetically-induced transparency. We started by constructing a geometry-based theoretical model that predicts the LSPR formula of any member of a certain group of single MNPs, using the LSPR for the most complex MNP geometry in the group. The model shows that from the LSPR of a nanorice, one could predict the LSPRs of concentric nanoshells, solid and cavity nanorods and nanodisks, respectively, and solid and cavity nanospheres. These formulae serve as quick references for predicting LSPRs since they can easily be compared to LSPRs obtained from spectral analysis. Likewise, we studied LSPR in addition to PIT in a nanoegg-nanorod dimer. We proposed this dimer in order to investigate how the interplay between plasmon coupling and MNP sizes affects PIT in complex geometries such as nanoeggs. Our result shows that the formation of PIT dips — regions in the dimer spectra where little or no incident radiation is absorbed by the dimer — are strongly-dependent on the nanorod size, due to the dependence of the plasmon coupling strength on the half-length of the nanorod. We investigated the phenomenon of PEF using a nanoegg-emitter system and a nanorod-emitter system, respectively. Emitters are organic or inorganic materials whose radiative decay rates increase dramatically when placed near a MNP subjected to plasmon excitation. Our theoretical results show that the choice of the MNP-emitter system to use depends on both the intrinsic quantum yield of the emitter and the antenna efficiency of the MNP. Theory shows that PEF is more substantial when the former is very low, and it will always occur if the latter is greater than the former. A nanorod-emitter system should serve as the preferred choice, due to the relatively easier synthesis of nanorods compared to nanoeggs, and the large longitudinal polarizability of nanorods as a result of the lightning rod effect. However, our theoretical model also shows that a nanoegg-emitter system can rival the PEF parameters obtained in a nanorod-emitter system, due to an increase in the Purcell factor of the emitter with increasing core-offset of the nanoegg, resulting from the presence of dipole-active modes in the nanoegg. / Thesis (PhD (Physics))--University of Pretoria, 2020. / University of Pretoria / National Research Foundation (NRF) / Physics / PhD (Physics) / Unrestricted
77

Nano-metals plasmonic coupling

Cheng, Ka Ying 12 March 2020 (has links)
In this work, we investigated nano-metal plasmonic coupling between dissimilar metals. We measured the optical transmission of nano-Ag coupled to other nano-metals using glass and Si substrates respectively. The reflected colors shifted from yellow to violet were obtained through the plasmonic coupling with nearest-neighbor nano-metals such as aluminum, magnesium, and ytterbium nano-metals. They were deposited randomly next to the nano-Ag. The metal size is from 8 to 15 nanometers. The results show that the colors changing is essentially due to plasmonic coupling between nano-Ag and another the nano-metals e.g. nano-Al The coupling caused a red shift in plasmonic resonance frequency, thus, changing the reflection color. The resonance shift agrees well with the simulation result using COMSOL. The inter-particle distance and particle size dependency of the optical spectra correspond to surface plasmon resonance extinction peaks for isolated nano-Ag and coupled with those neighboring nano- metals. Due to plasmonic coupling between nanoparticles in small space can create new resonances; red shifts as the interparticle distance reduce. Wavelengths are tuned by the extent of the interparticles interactions which relate to the particles size, interparticles distance and the similarity of nano metals. Using different nano metals to fabricate thin films can change the plasmonic resonance frequency which makes the reflected colours become multihued. When we look into the effect of the nano-particle size, and the distance between nano-particles, we discovered that larger nano-particle size has larger distance between the particles, and since the plasmonic coupling is a function of Inverse Square of the distance between particles. Therefore, smaller nano-particles have the strongest plasmonic coupling. Al produced the smallest nano-particle therefore it has the shortest distance between nano-Al and nano-Ag. Since the size of the particles can be controlled during deposition, the color changing of nano-Ag can be well defined. Thus tunable color changing devices can be fabricated
78

Development of Plasmonic Copper Chalcogenide Nanocrystals for Efficient Solar Energy Conversion / 高効率太陽光エネルギー変換を目指したプラズモニック銅カルコゲナイドナノ結晶の開発

LI, HAN 26 September 2022 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第24180号 / 理博第4871号 / 新制||理||1697(附属図書館) / 京都大学大学院理学研究科化学専攻 / (主査)教授 寺西 利治, 教授 島川 祐一, 教授 倉田 博基 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
79

Long Range Surface Plasmon Waveguides for Electrochemical Detection

Hirbodvash, Zohreh 04 November 2022 (has links)
An electrochemical detection method based on long range surface plasmon waveguides is proposed and demonstrated in this integrated article thesis. This dissertation uses CYTOP gold (Au) waveguides supporting long range surface plasmon polaritons (LRSPPs) in conjunction with grating couplers as well as Au waveguides embedded on a one-dimensional photonic crystal (1DPC) supporting Bloch LRSPPs integrated grating couplers. Grating couplers for Au stripe waveguides embedded in Cytop are demonstrated and analyzed. Grating couplers are used in a broadside coupling scheme where a laser beam incident on a stripe of Au on Cytop. The use of gratings for excitation of LRSPPs simplifies optical alignment and does not require high-quality input and output edge facets. Over a broad operating wavelength range, optical experiments are performed to demonstrate coupling loss and determine the efficiency of grating coupling using both a cleaved bow-tie PM fiber and a lensed PM fiber. The coupling loss and grating coupling efficiency of both types of fibers are also calculated numerically. Fluoropolymers with refractive indices close to water, such as CYTOP, are widely used to make waveguide biosensors today. Due to its low glass transition temperature, CYTOP presents limitations to fabrication processes. A truncated 1D photonic crystal may replace a low-index polymer cladding such as CYTOP to support Bloch LRSPPs within the bandgap of the 1DPC over limited wavenumbers and wavelength range. As a result of the high sensitivity of Au stripe Bloch LRSPP waveguide biosensors and their compatibility with high levels of integration, microelectrode systems that can be integrated with such optical biosensors are examined. A chip bearing a Au LRSPP waveguide that can also function as a working electrode (WE), a Pt counter electrode (CE), and Pt/Cu electrical contact pads, is used to demonstrate the electrochemical performance of LRSPPs waveguides. The cyclic voltammetry measurements were performed at different scan rates and concentrations of potassium ferricyanide as the redox species on Au LRSPPs waveguides. By fitting our experimental data to the Randles-Sevcik equation, we find the diffusion coefficient of potassium ferricyanide. The results from CV measurements obtained from chips are compared with commercial macroscopic electrodes. The CV measurements are also compared with theoretical results computed using the Butler-Volmer equation to determine the rate constant of the redox species at zero potential. A waveguide containing a stripe of Au that propagates infrared surface plasmon polaritons (SPPs), acting simultaneously as an electrode in a three-electrode electrochemical cell is also examined. Under SPP excitation, cyclic voltammetry was measured as a function of incident optical power and wavelength (1350 nm). In oxidation and reduction reactions, energetic electrons are separated from energetic holes. Under SPP excitation, redox current densities increase by 10×. With the SPP power, the oxidation, reduction, and equilibrium potentials drop by as much as 2× and separate in correlation with the photon energy. According to electrochemical impedance spectroscopy, charge transfer resistance dropped by almost 2× under SPP excitation. During SPP excitation, the temperature of the working electrode is monitored in situ and independent control experiments are performed to isolate thermal effects. Measurements of chronoamperometry with SPPs modulated at 600 Hz yield a rapid current response modulated at the same frequency, ruling out thermally enhanced mass transport. The observation is attributed to the opening of optically controlled non-equilibrium redox channels associated with the energetic carrier transfer to the redox species. During CV and chronoamperometry measurements, convolutional voltammetry is performed by monitoring the SPP output power versus the applied voltage. Using both experimental and theoretical methods, we demonstrate that the SPP output power is proportional to the electrochemical current convolution. A SPP voltammogram confirms that signal changes are mainly caused by differences in refractive index between reduced and oxidized forms of redox species. In addition, we demonstrate that energetic carriers resulted from SPP absorption significantly improved electrochemical sensitivity. As a complementary electrochemical technique, convolutional voltammetry is useful since the signal is related directly to the concentration of electroactive species on the working electrode (WE) and independent of the scan rate. As a probe of electrochemistry taking place in waveguides, surface plasmon polaritons (SPPs) propagating along one are sensitive. In such a waveguide, the optical output power is proportional to the time convolution of the electrochemical current density, eliminating the need to calculate the latter a posteriori via numerical integration. It is demonstrated that a waveguide WE provide an optical response that can be experimentally validated by chronoamperometry and cyclic voltammetry measurements under SPP excitation for a few potassium ferricyanide (redox species) concentrations in potassium nitrate (electrolyte) and various scan rates. Cyclic voltammetry measurements taken under increasing SPP power produce a regime where SPPs no longer act solely as the probe, but also act as a pump, producing energetic electrons and holes via their absorption in the WE. The energetic carriers enhance (10×) redox current densities as well as the convolution signal measured directly as the optical output power over time.
80

Development of a New Plasmonic Transducer for the Detection of Biological Species

Laffont, Emilie 25 January 2024 (has links)
During the COVID-19 outbreak, PCR tests were widely used for large-scale testing and screening. Yet, this technique requires bulky and time-consuming procedures to prepare the samples collected from the patients before their analysis by well-trained experts with expensive and specific equipment. PCR is therefore not competitive as a technique of detection for a widespread and rapid use in point-of-care sites. Thus, the COVID-19 pandemic highlighted the need for cheap and easy-to-implement biosensors. Surface plasmon resonance based sensors were suggested as a promising alternative in recent years. Indeed, they enable real-time and label-free detection of a wide range of analytes. That explains their widespread use in various fields of applications such as pharmacology, toxicology, food safety, and diagnosis. This thesis proposes and demonstrates a new plasmonic configuration of detection, which can address challenges posed by point-of-care settings. The gratings used as transducers in this configuration were fabricated based on laser interference lithography combined with a nanoimprinting process. The responses of these nanostructures interrogated by a p-polarized light beam result in a transfer of energy between two diffracted orders over an angular scan. This optical phenomenon termed as “optical switch”, was theoretically and experimentally investigated and optimized. The principle of detection based on this specific configuration was demonstrated for the detection of small variations in the bulk refractive index with solutions comprised of different ratios of de-ionized water and glycerol. A limit of detection in the range of 10−6 RIU was achieved. In addition, preliminary bio-assays obtained by combining this configuration with a functionalization are presented and demonstrate the selectivity and the potential of this new plasmonic configuration for biosensing applications. This thesis work paves the way for the use of the optical switch configuration as a biosensor aligned with low-cost manufacturing and relevant for diagnosing in point-of-care sites.

Page generated in 0.025 seconds