• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 152
  • 36
  • 22
  • 10
  • 9
  • 7
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 263
  • 61
  • 61
  • 46
  • 46
  • 44
  • 30
  • 30
  • 29
  • 29
  • 29
  • 28
  • 25
  • 24
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Exaltation de l'émission dans le proche infrarouge par des antennes plasmoniques : nanotubes de carbone et centres G dans le silicium. / Photoluminescence enhancement in the near infrared using plasmonic antennas : carbon nanotubes and G-centers in silicon.

Beaufils, Clément 10 May 2019 (has links)
L'objectif général de cette thèse était d'exalter l'émission dans le proche infrarouge en utilisant des antennes plasmoniques. Les antennes plasmoniques permettent de modifier la dynamique de désexcitation ainsi que le diagramme d'émission d'un émetteur; ces deux aspects permettent donc d'améliorer/exalter la photoluminescence par rapport à un émetteur non couplé à une antenne. Au cours de cette thèse, deux émetteurs ont été étudiés : les nanotubes de carbone et les centres G dans le silicium.Les antennes plasmoniques sont, par exemple, des nanoparticules métalliques. Ainsi, dans un premier temps, nous avons étudié les propriétés de diffusion de nanoparticules métalliques. Ceci a permis de développer une technique permettant de déposer des nanoparticules uniques sur un substrat. La caractérisation optique de diverses nanoparticules déposées sur divers substrats fut réalisée par des mesures de spectres de diffusion. Des études en polarisation sur le signal excitateur ainsi que sur le signal diffusé ont permis de sonder l'origine des résonances plasmoniques apparaissant dans les spectres de diffusion. Les influences de la température et du substrat sur les spectres de diffusion ont aussi été étudiées.Dans une deuxième partie, nous nous sommes intéressés à un premier émetteur dans le proche infrarouge : les nanotubes de carbone semi-conducteurs. Nous avons caractérisé la photoluminescence d'un ensemble de nanotubes puis d'uniques nanotubes. La photoluminescence d'un nanotube de carbone unique est caractérisée par un faiblement rendement radiatif (de l'ordre du %) ce qui implique que, dans notre montage expérimental, l'émission par un unique nanotube est à la limite de détectabilité. Afin d’obtenir des applications optiques viables à base de nanotubes de carbone, nous avons essayé d'exalter leur photoluminescence grâce à des antennes plasmoniques. Nous avons donc déposé des nanoparticules métalliques au-dessus d’une couche de nanotubes de carbone. Nous avons observé ponctuellement l'exaltation de la photoluminescence, mais cette exaltation cessait sur des durées de l'ordre de la minute.Enfin, nous avons étudié un deuxième émetteur dans le proche infrarouge : les centres G dans le silicium. La caractérisation optique d'un ensemble de centre G a été réalisé. Le spectre d'émission a été mesuré et analysé quantitativement. Le temps de vie du centre G a aussi été mesuré pour la première fois. Ces deux types d'études (spectrales et temporelles) ont aussi été réalisées à diverses températures afin de sonder la dynamique de désexcitation des centres G. La saturation d'un ensemble de centres G a aussi été étudiée quantitativement. Enfin, nous avons réalisé des mesures laissant penser que le régime du centre G unique est presque atteint. L'exaltation de l'émission des centres G par des antennes plasmoniques n'a pas pu être étudiée par manque de temps. / The goal of this work was to enhance the photoluminescence in the near infrared using plasmonic antennas. Plasmonic antennas can modify both the recombination dynamics and the emission diagram; these two aspects can thus be used to enhance the photoluminescence of an emitter in comparison to an emitter not coupled with an antenna. During this thesis, two emitters were studied: carbon nanotubes and G-centers in silicon.Plasmonic antennas can be metallic nanoparticles for instance. Thus, we first studied the scattering properties of metallic nanoparticles. During this study, we developed a technique to deposit single nanoparticles on a substrate. The optical characterization of several nanoparticles on different substrates was realized through scattering spectrum measurements. Polarization studies on both the excitation light and the emitted light were realized in order to analyze the origin of plasmonic resonances in the scattering spectrum. The influence of the temperature and the substrate on the scattering spectrums was also investigated.Secondly, we looked into a first near infrared emitter: semi-conducting carbon nanotubes. We characterized the photoluminescence from an assembly of carbon nanotubes and then from single carbon nanotubes. The photoluminescence of a single carbon nanotube is characterized by a low quantum yield (typically, a few %) which implied, in our experimental setup, that the emission from a single nanotube is at the limit of detectability. In order to propose viable optical applications based on carbon nanotubes, we tried to enhance their photoluminescence with plasmonic antennas. We thus deposited metallic nanoparticles on top of a layer of carbon nanotubes. We occasionally observed some enhancements, but this typically ceased in less than a minute.Finally, we studied a second emitter in the near infrared: the G-centers in silicon. The optical characterization was realized. The emission spectrum was measured and quantitatively analyzed. The lifetime of the G-center was measured for the first time. These two studies (spectrally resolved and temporally resolved) were also realized for different temperatures in order to characterize the recombination dynamics of the G-centers. The saturation of an assembly of G-centers was also quantitatively studied. We also realized measurements suggesting that the single G-center regime has nearly been achieved. The enhancement of the photoluminescence of G centers with plasmonic antennas was not realized due to lack of time.
152

A novel optical bio-chemical sensor based on hybrid nanostructures of Bowtie nanoantennas and Fabry-Perot Interferometer

Liu, Huanhuan 20 November 2013 (has links) (PDF)
Nowadays, the increasing concern for environmental analysis and food quality control, as well as medical needs such as fast diagnosis in case of emergency events, leads to a growing need for new generations of chemical and biological sensors. These devices should have high sensitivity and reliability, perform specific detection of molecules and enable multiple parallel sensing, while being cheap, portable, fast and easy to use. Thus, a general trend tends towards bio-chemical sensors which are on-chip integrated, label-free, and compatible with standard micro-technologies. Photonic dielectric devices based on porous silicon and metallic nanostructures based on plasmon resonances are good candidates to fulfill the above requirements. Porous silicon is a biocompatible material, with a huge specific surface providing a sensitivity enhancement by several orders of magnitude compared to bulk materials; furthermore, its refractive index and thickness can be easily tuned, enabling for the realization of a large variety of photonic designs. Metallic nanostructures provide high confinement and strong field enhancement in sub-wavelength regions, leading to high sensitivities; combined with fluorescence or other sensing mechanisms such as Raman or IR spectroscopy, they have already demonstrated increased sensing potential. The realization of a hybrid device combining both elements would be highly interesting, since it could yield the advantages of both elements, and the photonic structure could shape the plasmonic resonance to develop ultrasensitive devices with narrow resonance linewidth and increased sensing depth. In this context, we realized and studied a novel hybrid photonic / plasmonic device exploiting the coupling between the surface plasmon resonance of a bowtie nano - antenna (NAs) array and the photonic modes of porous silicon (PSi) interferometer. We designed and fabricated a NAs array with resonance wavelength ~ 1.3μm on a homogeneous PSi interferometer. A thin spacing silica layer with controllable density protects the pores of PSi layer and provides a smooth surface for the fabrication of NAs. The coupling mechanisms of two elements - NA array and interferometer, are studied with 2 models, which are interferometer approach and resonator approach. The interferometer approach is focused on studying the influence of NAs array as a homogeneous layer on the fringes shift of the interferometer. For resonator approach, the coupled mode theory is applied. With these models, strong coupling between both elements are discovered: splitting. In the case of viii smaller environment variation, the hybrid device gains 5-10 fold sensitivity enhancement vs. 2 elements alone. The controllable SiO2 layer allows us to sense the index variation within PSi interferometer. This opens a route towards double parallel sensing. The development of the theoretical models under different environment is ongoing, which is expected to utilize the strong coupling for the sensing. A further investigation of the sensing potential of the hybrid device would be expected. And the 2 elements constituting the hybrid structure - the interferometer and the NA array - could be modified in order to enlarge the study to a wider family of devices with greater properties and performances. This work was performed within the framework of the program "Groups of Five Ecoles Centrales" between China Scholarship Council (CSC) and Lyon Institute of Nanotechnologies (INL, CNRS UMR 5270). The project has been supported by the Nanolyon technology platform at INL.
153

Photoluminescence Enhancement of Ge Quantum Dots by Exploiting the Localized Surface Plasmon of Epitaxial Ag Islands

January 2015 (has links)
abstract: This dissertation presents research findings regarding the exploitation of localized surface plasmon (LSP) of epitaxial Ag islands as a means to enhance the photoluminescence (PL) of Germanium (Ge) quantum dots (QDs). The first step of this project was to investigate the growth of Ag islands on Si(100). Two distinct families of Ag islands have been observed. “Big islands” are clearly faceted and have basal dimensions in the few hundred nm to μm range with a variety of basal shapes. “Small islands” are not clearly faceted and have basal diameters in the 10s of nm range. Big islands form via a nucleation and growth mechanism, and small islands form via precipitation of Ag contained in a planar layer between the big islands that is thicker than the Stranski-Krastanov layer existing at room-temperature. The pseudodielectric functions of epitaxial Ag islands on Si(100) substrates were investigated with spectroscopic ellipsometry. Comparing the experimental pseudodielectric functions obtained for Si with and without Ag islands clearly identifies a plasmon mode with its dipole moment perpendicular to the surface. This observation is confirmed using a simulation based on the thin island film (TIF) theory. Another mode parallel to the surface may be identified by comparing the experimental pseudodielectric functions with the simulated ones from TIF theory. Additional results suggest that the LSP energy of Ag islands can be tuned from the ultra-violet to the infrared range by an amorphous Si (α-Si) cap layer. Heterostructures were grown that incorporated Ge QDs, an epitaxial Si cap layer and Ag islands grown atop the Si cap layer. Optimum growth conditions for distinct Ge dot ensembles and Si cap layers were obtained. The density of Ag islands grown on the Si cap layer depends on its thickness. Factors contributing to this effect may include the average strain and Ge concentration on the surface of the Si cap layer. The effects of the Ag LSP on the PL of Ge coherent domes were investigated for both α-Si capped and bare Ag islands. For samples with low-doped substrates, the LSPs reduce the Ge dot-related PL when the Si cap layer is below some critical thickness and have no effect on the PL when the Si cap layer is above the critical thickness. For samples grown on highly-doped wafers, the LSP of bare Ag islands enhanced the PL of Ge QDs by ~ 40%. / Dissertation/Thesis / Doctoral Dissertation Physics 2015
154

Optical Methods for Studying Cell Mechanics

January 2016 (has links)
abstract: Mechanical properties of cells are important in maintaining physiological functions of biological systems. Quantitative measurement and analysis of mechanical properties can help understand cellular mechanics and its functional relevance and discover physical biomarkers for diseases monitoring and therapeutics. This dissertation presents a work to develop optical methods for studying cell mechanics which encompasses four applications. Surface plasmon resonance microscopy based optical method has been applied to image intracellular motions and cell mechanical motion. This label-free technique enables ultrafast imaging with extremely high sensitivity in detecting cell deformation. The technique was first applied to study intracellular transportation. Organelle transportation process and displacement steps of motor protein can be tracked using this method. The second application is to study heterogeneous subcellular membrane displacement induced by membrane potential (de)polarization. The application can map the amplitude and direction of cell deformation. The electromechanical coupling of mammalian cells was also observed. The third application is for imaging electrical activity in single cells with sub-millisecond resolution. This technique can fast record actions potentials and also resolve the fast initiation and propagation of electromechanical signals within single neurons. Bright-field optical imaging approach has been applied to the mechanical wave visualization that associated with action potential in the fourth application. Neuron-to-neuron viability of membrane displacement was revealed and heterogeneous subcellular response was observed. All these works shed light on the possibility of using optical approaches to study millisecond-scale and sub-nanometer-scale mechanical motions. These studies revealed ultrafast and ultra-small mechanical motions at the cellular level, including motor protein-driven motions and electromechanical coupled motions. The observations will help understand cell mechanics and its biological functions. These optical approaches will also become powerful tools for elucidating the interplay between biological and physical functions. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2016
155

Otimização e caracterização de nanoestruturas de ouro e prata recobertas com uma camada ultrafina de MnO2, SiO2 ou TiO2: uma alternativa para aplicações das técnicas espectroscópicas intensificadas por superfície

Marques, Flávia Campos 26 July 2018 (has links)
Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-09-20T12:04:51Z No. of bitstreams: 1 flaviacamposmarques.pdf: 5444687 bytes, checksum: ee4ddf83c1895a69c8df07fd21fede21 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-10-01T19:24:51Z (GMT) No. of bitstreams: 1 flaviacamposmarques.pdf: 5444687 bytes, checksum: ee4ddf83c1895a69c8df07fd21fede21 (MD5) / Made available in DSpace on 2018-10-01T19:24:51Z (GMT). No. of bitstreams: 1 flaviacamposmarques.pdf: 5444687 bytes, checksum: ee4ddf83c1895a69c8df07fd21fede21 (MD5) Previous issue date: 2018-07-26 / O presente trabalho abrange as sínteses e caracterizações nanobastões de ouro (AuNB) e nanopartículas esféricas de ouro e prata (AuNE e AgNE) recobertos por uma camada ultrafina de óxido de manganês, silício ou titânio. Utilizaram-se para caracterização das camadas dielétricas as técnicas UV-VIS, espectroscopia de absorção no infravermelho, difração raio X (XRD), voltametria cíclica (CV) e microscopia eletrônica de transmissão (TEM). As nanoestruturas plasmônicas (NP) utilizadas como substratos nas aplicações espectroscópicas são instável na presença de muitos analitos, o que pode levar à agregação e posteriormente à precipitação do material, inviabilizando a caracterização do adsorbato. O recobrimento das NP por camadas dielétricas aumenta fortemente a sua estabilidade estrutural, conservando suas propriedades plasmônicas. Nesse intuito, o escopo desse trabalho visou recobrir os AuNB por MnO2, SiO2 ou TiO2 e AuNE ou AgNE por TiO2 e verificar a sua aplicabilidade nas técnicas espectroscópicas de superfície. Por meio do deslocamento da banda de ressonância de plasmon de superfície localizado foi possível acompanhar a formação e o aumento da espessura da camada dielétrica adsorvida na interface do metal quando comparados às NP sem recobrimento, que são resultados das mudanças no índice de refração local às NP. A técnica de XRD foi utilizada para confirmar a formação dos materiais híbridos; por essa técnica foram observados halo não-cristalinos atribuídos aos óxidos e picos de difração característicos de nanoestruturas metálicas de Au. Além disso, foi possível caracterizar as NP de Au e Ag com os óxidos por meio da análise por TEM, em que foram observados recobrimentos uniformes das camadas de MnO2, SiO2 ou TiO2 envolvendo o núcleo metálico com espessuras inferiores a 6 nm. O uso da técnica de CV permitiu verificar que as cascas de óxidos não apresentaram orifícios. Os materiais híbridos otimizados foram utilizados como substratos espalhamento Raman intensificado por superfície (SERS) e fluorescência intensificada por superfície (SEF) para análise de adsorção da molécula IR-820. As medidas SERS utilizando as radiações incidentes 633 e 1064 nm mostraram um aumento significativo nas intensidades relativas de alguns modos vibracionais comparado ao espectro Raman da molécula livre, através dos quais foram realizadas as atribuições dos modos vibracionais. Já as medidas SEF obtidas com a radiação incidente 785 nm, observou-se um aumento da intensidade SEF para espessuras maiores de óxido, atribuídas ao aumento da distância entre adsorbato e a superfície condutora do metal. Além disso, foi estudada por SERS a adsorção de ácido 3-mercaptopropiônico (HMP) e ácido 4-mercaptobenzoico (HMB) nessas NP recobertas, e através dos resultados foram atribuídos os modos vibracionais mais significativos. Através dessas atribuições foi possível verificar o sitio de adsorção e a orientação das moléculas HMP e HMB. Os resultados obtidos confirmaram a formação da camada de óxido envolvendo o núcleo metálico. Além disso, as aplicações dos efeitos SERS e SEF mostraram-se bastante promissoras para os substratos sintetizados. / The present work covers the syntheses and characterizations of gold nanorods (AuNR) and gold and silver spherical nanoparticles (AuSN and AgSN) coated with ultrathin layers of manganese, silicon or titanium oxide. Dielectric layers were characterized by UV-Vis, infrared absorption spectroscopy, X ray diffraction (XRD), cyclic voltammetry (CV) and transmission electron microscopy (TEM) techniques. Plasmonic nanostructures (PN) which are used as substrates in spectroscopic applications are unstable in the presence of many analytes, thus leading to aggregation and subsequent precipitation. This instability makes the characterization of the adsorbate much more challenging. Coating PN with dielectric layers strongly increases its structural stability, while retaining their plasmonic properties. To this end, the scope of this work was to cover AuNR by ultrathin layers of MnO2, SiO2 or TiO2 and AuNS or AgNS by TiO2 and verify its applicability in surface spectroscopic techniques. By means of displacement of the localized surface plasmon resonance band, it was possible to follow the formation and increase of the thickness of the dielectric layer adsorbed at the interface of the metal when compared to PN without coating, which are results of the changes in the local refractive index to PN. The XRD technique was used to confirm the formation of the hybrid materials. It was observed non-crystalline haloes attributed to the oxides and diffraction peaks characteristic of Au metallic nanostructures. Moreover, it was possible to characterize the Ag and Au PN with oxides by means of analysis by TEM, wherein was possible to confirm the presence of uniform layer coatings of MnO2, SiO2 or TiO2 surrounding the metallic core with a thickness below 6 nm. The use of the CV technique allowed verifying that the oxide shells did not have pinholes. The optimized hybrid materials were used as surface enhanced Raman scattering (SERS) and surface enhanced fluorescence (SEF) substrates for adsorption analysis of the IR-820 molecule. The SERS measurements using incident radiations at 633 and 1064 nm showed a significant increase in the relative intensities of some vibrational modes compared to the Raman spectrum of the free molecule, through which the assignments of the vibrational modes were performed. The SEF measurements obtained with the incident radiation 785 nm showed an increase in the SEF intensity for higher oxide thicknesses, which was attributed to the increase in the distance between adsorbate and the conductive surface of the metal. Moreover, adsorption of the 3-mercaptopropionic acid (MPA) and 4-mercaptobenzoic acid (MBA) molecules in these NP coated was studied using SERS. It was possible to identify and assign the most significant vibrational modes and confirm the adsorption site of MPA and MBA molecules. The results confirmed the successful formation of the oxide layers surrounding the metallic cores. Finally, the applications of the SERS and SEF effect have shown to be very promising for the synthesized substrates.
156

Adressage et contrôle de nanosources optiques par plasmonique intégrée ou fibrée / Addressing and control of optical nanosources by integrated or fibered plasmonics

Barthes, Julien 18 June 2015 (has links)
Les plasmons polaritons de surface, modes supportés par des nanostructures métalliques permettent de confiner la lumière à des échelles sub-longueurs d’onde. En s’affranchissant de la limite de diffraction, ces modes constituent des pistes intéressantes pour l’adressage et le contrôle de nanosources optiques (molécules, boites quantiques...). Par exemple, un nanofil métallique constitue un guide plasmonique unidimensionnel qui permet d’exciter une nanosource ou encore de coupler deux émetteurs avec des applications possibles pour la réalisation de composants nano-optiques intégrés. En revanche, la perte d’énergie dans le métal diminue la portée de ces dispositifs. Une stratégie consiste donc à travailler sur une configuration hybride : plasmonique et fibre optique, pour coupler efficacement l’émission de la nanosource à un mode de fibre. Ceci ouvre la voie à la réalisation d’une nanosource fibrée de manipulation aisée pouvant être utilisée comme source de photon unique pour la cryptographie quantique ou plus simplement comme une sonde de champ proche optique haute résolution.Après une étude des principaux canaux de relaxation d’une molécule fluorescente à proximité d’un guide plasmonique, nous discutons de l’optimisation du couplage entre l’émetteur et le guide plasmonique en jouant sur sa forme et la longueur d’onde d’émission. Ensuite, nous nous intéressons au comportement d’une structure hybride composée d’une fibre optique étirée et métallisée. Enfin, nous montrons que l’optimisation du transfert d’énergie d’une molécule fluorescente en présence de cette structure permet de collecter plus de 50% de l’énergie lumineuse d’un nano-émetteur posé sur un substrat vers une fibre optique par le truchement d’un plasmon. / Surface plasmon polariton (SPP) can confine light on subwavelength dimensions. Since they are not diffraction limited, they are of great interest for addressing and controlling optical nanosources. For example, a metal nanowire defines 1D plasmonic waveguide with a great potential for either addressing or coupling quantum emitters. Therefore, SPP opens great opportunities for integrated optical applications. However, SPP suffer from ohmic losses that jeopardize the applications of plasmonic components. In this context, we study the possibilities provided by an hybrid plasmonic-photonicstructure to couple efficiently an emitter to a fiber mode. Such a structure paves the way for fibered single photon nanosource or high resolution optical probe. In this thesis manuscript, we first study the coupling rate between a fluorescent molecule and a metallic nanowire thanks to Green’s dyad formalism. This leads us to distinguish the different relaxation channels and the enhancement of the energy transferred into the plasmonic guided mode by optimizing the shape of the guide (crystalline nano-wire,slow modes). Then, we investigate the energy propagation in a metal coated taperedoptical fiber. Finally, we achieve an optimal configuration for which more than 50% of the energy emitted by a quantum emitter laid on a substrat is transferred into an optical fiber.
157

Síntese e caracterização de nanobastões e nanobipirâmides de Au para aplicação em biossensores plasmônicos

Peixoto, Linus Pauling de Faria 21 August 2015 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-01-04T11:25:56Z No. of bitstreams: 1 linuspaulingdefariapeixoto.pdf: 3833578 bytes, checksum: 7044b2daa711546991179b32265a99dc (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-01-25T15:38:14Z (GMT) No. of bitstreams: 1 linuspaulingdefariapeixoto.pdf: 3833578 bytes, checksum: 7044b2daa711546991179b32265a99dc (MD5) / Made available in DSpace on 2016-01-25T15:38:14Z (GMT). No. of bitstreams: 1 linuspaulingdefariapeixoto.pdf: 3833578 bytes, checksum: 7044b2daa711546991179b32265a99dc (MD5) Previous issue date: 2015-08-21 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / O presente trabalho visou a síntese e caracterização de nanopartículas de ouro (AuNPs) e sua aplicação na construção de biossensores plasmônicos utilizando para a detecção as técnicas de LSPR (ressonância de plasmon de superfície localizado) e SERS/SEF (espalhamento Raman intensificado por superfície / fluorescência intensificada por superfície). As AuNPs foram sintetizadas na forma de nanobastões (AuNRs) e nanobipirâmides (AuNBs) utilizando o método de crescimento por partículas precursoras (seed) e utilizando surfactantes para direcionamento do crescimento das mesmas. Devido ao melhor rendimento obtido para AuNRs, avaliou-se apenas sua sensibilidade em suspensão ou imobilizadas em lâminas de vidro. Para a imobilização em vidro, o 3-mercaptopropiltrimetoxisilano foi utilizado como molécula ligante entre o vidro e as AuNPs e posteriormente os substratos modificados foram caracterizados por espectroscopia UV-VIS, microscopia eletrônica de varredura e voltametria cíclica. A superfície dos AuNRs foi modificada para a detecção de duas biomoléculas-prova: (1) estreptavidina, realizada pelo mecanismo de interação por bioafinidade com a biotina, utilizando cisteamina como ligante entre as AuNPs e a biotina; (2) anti-BSA, através do mecanismo de interação antígeno-anticorpo, ativando a superfície das AuNPs (previamente modificada com ácido mercaptoundecanóico) com N-(3-dimetilaminopropil)-N′-etilcarbodiimida e N-hidroxisuccinimida. A sensibilidade LSPR foi monitorada pelo deslocamento do máximo da banda do plasmon longitudinal dos AuNRs frente ao aumento do índice de refração local devido às modificações na superfície dos AuNRs, alcançando 297 nm RIU-1. A detecção por SERS foi realizada através do modo extrínseco, utilizando um corante (IR-820) como molécula marcadora sobre a superfície dos AuNRs. Os biossensores construídos tiveram desempenho satisfatório na detecção de moléculas provas, além de boa sensibilidade frente a modificações no índice de refração do meio; isso foi observado tanto para AuNPs em suspensão ou imobilizadas em lâminas de vidro. Os procedimentos reportados são simples, rápidos e eficientes para a aplicação em biossensores. Adicionalmente, a integração das AuNPs em suspensão (modificadas com moléculas marcadoras) com as AuNPs imobilizadas nas lâminas de vidro, se mostrou um método interessante para a detecção de biomoléculas utilizando SERS/SEF. / This work was focused on the synthesis and characterization of gold nanoparticles (AuNPs) for applying as LSPR (localized surface plasmon resonance) and SERS/SEF (surface enhanced Raman spectroscopy / surface enhanced fluorescence) based biosensors. AuNPs were synthesized in two different forms, nanorods (AuNRs) and nanobipyramids (AuNBs), controlling the growth of seeds by using surfactants. A better yield was obtained to AuNRs and therefore, only the sensitivity of these nanoparticles was evaluated either using the AuNRs in suspension or immobilized on glass slides. A monolayer of 3-mercaptopropylmetoxisilane was used as a linker between AuNPs and glass surface, and after the modified glass slides were characterized with UV-VIS spectroscopy, scanning electronic microscopy and cyclic voltammetry. AuNRs surface was modified aiming the detection of two probe molecules: (1) streptavidin allowed by the bioafinity for biotin, using cysteamine as monolayer between AuNPs and biotin; (2) anti-BSA allowed by an antigen-antibody interaction activating the surface (previously modified with mercaptoundecanoic acid) with N-(3-dimetilaminopropil)-N′-etilcarbodiimide and N-hidroxisuccinimide. The LSPR sensitivity was evaluated by monitoring shifts in the longitudinal plasmon mode of AuNRs with changes in local refractive index due to surface binding events, reaching 297 nm RIU-1. SERS sensitivity was carried out in an extrinsic mode using a dye (IR-820) as SERS label on AuNRs surface. The biosensors developed in this work (AuNPs in suspension and adsorbed on glass slides) are efficient as biosensor as they presented good sensitivity for change in refractive index and for surface binding with probe molecules. The main advantages of these biosensors is the simple methodology summed to the short time of analysis. In addition, coupling the labeled AuNPs in suspension with the AuNPs adsorbed on glass slides is an interesting methodology for SERS/SEF detection of biomolecules.
158

Etude de couches structurées à base d’azopolymères pour l’optique diffractive et plasmonique photo-modulable / Study of azobenzene-containing structured films for tunable photonic and plasmonic systems

Chevalier, Sylvain 10 October 2019 (has links)
La photoisomérisation de la molécule d’azobenzène entre ses formes trans et cis génère un travail mécanique qui peut déformer la matrice solide environnante et provoquer un déplacement de matière. Il est en particulier possible de contrôler optiquement la formation de motifs de taille micro- et nanométrique à la surface d’un matériau de type polymère ou verre. Ces phénomènes ont été étudiés en détails ces dernières années et de nombreuses approches ont été proposées pour réaliser des dispositifs ajustables qui exploitent les propriétés photomécaniques des azo-matériaux.L’objectif de ce doctorat était de réaliser des réseaux de micro- et nanostructures hybrides métal/diélectrique contenant des matériaux à base de dérivés d’azobenzène, et d’étudier, d’une part, la réponse photomécanique de ces structures et, d’autre part, la variation des propriétés optiques des réseaux associée à la photo-déformation des structures.La première partie de ce travail a consisté au développement d’une méthode de structuration de polymères photo-actifs à base d’azobenzène en réseaux de piliers par embossage en voie liquide. L’étude des déformations des micro- et nanostructures induites par photo-stimulation dans la bande d’absorption des molécules d’azobenzène montre en particulier que les déformations sont dirigées par la polarisation de la lumière et que certaines déformations peuvent être réversibles. Les propriétés optiques (diffraction, transmission) des réseaux de micro- et nanostructures sont alors ajustables en fonction de la déformation du motif.Dans un second temps, les motifs d’azo-matériaux sont recouverts par une fine couche d’or d’une dizaine de nanomètres. Il a été montré que les propriétés photomécaniques de l’azo-matériau sont conservées malgré la métallisation. Dans la gamme du spectre visible, les interférences présentes dans le spectre de réflexion sont annulées par la déformation du motif du réseau. En lumière infrarouge, cette déformation permet de modifier les conditions de couplages entre les modes localisés et les modes propagatifs présents dans la structure métallisée. Le contrôle de la forme des motifs qui composent le réseau permet donc de moduler avec précision les propriétés optiques et plasmoniques du système hybride. / Trans-cis photo-isomerization of azobenzene units generate mechanical work on its hosting matrice, allowing matter migration inside. This property allows to optically pattern micro and nanometric structures at the surface of azobenzene-containing materials (polymer, glass). Such phenomena were widely investigated and exploited to produce tunable devices exploiting photo-mechanical properties of azobenzene molecules.The purpose of this thesis were to fabricate metal-dielectric azobenzene-containing micro and nanostructured gratings and study the evolution of their optical and plasmonic properties under light stimulation.First, we developped a structuration methode inspired from solvent-assisted nanoimprint lithography to generate 2D azobenzene-gratings of pillars. Type and direction of the deformation induced in the structures were directly associated with the stimulation light polarization. Reversibility of the deformation were observed for a certain type of illumination cycle. Modification of the optical properties (transmission, diffraction) was investigated during the deformation of the pillars.Then, gratings were covered with tens of nanometers of gold. Metallization did not affect the deformation of the structures. Study in the visible range shows that interferences in the reflection spectra vanishes during the photo-deformation. In the infrared domain, the deformation leads to a strong modification of the plasmonic properties, enhancing particular plasmonic modes in favor of others. Control of the grating pillars shape allows a precise tenability of optical and plasmonic properties of the hybrid device.
159

Sledování reakcí na povrchu plasmonických nanočástic pomocí povrchem-zesílené Ramanovy spektroskopie / Monitoring of surface reactions on plasmon nanoparticles by surface-enhanced Raman spectroscopy

Kožíšek, Jan January 2021 (has links)
The presented diploma thesis is focused on finding conditions suitable for the study of surface reactions, especially Suzuki-Miyaura cross-coupling reaction (SMCR), by the surface- enhanced Raman scattering (SERS) method. The first part of the work deals with the optimization of the conditions of individual reactions using the classical synthetic Schlenk technique. Traditional, published, conditions for SMCR were gradually modified during the work so that the reactions could be performed in aqueous media and at room temperature, i.e., under conditions suitable for SERS spectroscopy. The following catalysts were tested: (i) PEPPSI - the traditional SMCR catalyst; (ii) palladium ions; (iii) Pd colloids; (iv) bimetallic colloids of Pd and plasmonic metal (Ag, Au) in the form of core-shell and alloy; (v) Ag and Au colloids with additions of palladium salt or N- heterocyclic carbenes (NHC-catalysts). Two groups of substrates were used: substrates with functional groups with high affinity for the surfaces of metal nanoparticles (NPs) and substrates without these anchoring functional groups. Substrates without the anchoring functional groups can be expected to enter the SMCR reaction from solution. In the second part of this diploma thesis selected reaction mixtures for SMCR were performed in septum...
160

Optická odezva infračervených plazmonických antén za přítomnosti tenké vrstvy oxidu křemičitého / Optical response of infrared plasmonic antennas in presence of silicon dioxide thin film

Biolek, Vladimír January 2017 (has links)
The diploma thesis deals with the optical response of resonant infrared antennas on silicon dioxide thin film. At first, theory of electromagnetism at metal/dielectric interfaces is described. In the next part, experimental and numerical methods used in the thesis are described and strong coupling between two systems is explained. In the final part of the thesis, the optical response of resonant infrared antennas on a silicon dioxide thin film is studied by Fourier transform Infrared Spectroscopy and FDTD simulations which both show the strong coupling between localized plasmons and phonons in silicon dioxide.

Page generated in 0.1266 seconds