• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 152
  • 36
  • 22
  • 10
  • 9
  • 7
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 263
  • 61
  • 61
  • 46
  • 46
  • 44
  • 30
  • 30
  • 29
  • 29
  • 29
  • 28
  • 25
  • 24
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Evanescent and Plasmonic Sensing Using Linear and Radial Polarization Modes in Tapered Microfibers

Idehenre, Ighodalo U. 29 May 2013 (has links)
No description available.
172

Development of Nanoparticle Catalysts for Plasmonic Photoelectrochemical Reduction of Carbon Dioxide

Morin Caamano, Tatiana I. M. 16 January 2023 (has links)
The threat of the ongoing climate crisis requires the complete reduction of carbon emissions in the next two to three decades. Carbon dioxide electrochemical reduction (CO₂ER) poses a promising pathway to be able to maintain our current energy infrastructures in a carbon neutral fashion, by allowing the production of fuels and chemicals, such as CO, methanol and ethylene, with the use of carbon capture technologies and green energy. Thus far, Cu is the only metal that has demonstrated the ability to form hydrocarbon products. However, Cu is hindered by low selectivity. Improvements have been observed by coupling Cu with noble metals, such as Ag and Au. However, despite significant advancements, the technology has yet to achieve sufficient performance in activity, stability and selectivity for commercial viability. As such, this work pursued to further advance the activity of CO₂ER through the use of plasmonic Cu-based catalysts and the study of novel dinitrile-based electrolytes. It has recently been identified that CO₂ER can benefit from direct plasmonic effects induced by light illumination. In essence, certain light wavelengths can induce collective oscillations of the free electrons in the metallic particles, leading to an enhancement of their electrocatalytic performance. As such, the first project of this work involved the development and testing of plasmonic Cu-Ag bimetallic catalysts for the application of CO₂ER. Cu, Ag, as well as Cu-Ag bimetallic particles with variable morphologies were able to be synthesized through a facile one-pot sodium borohydride chemical reduction method. The synthesized catalyst performance was also compared to commercial catalysts. The synthesized particles were found to be active catalysts for CO₂ER, with improved electro-catalytic activities exhibited by Cu₈₅Ag₁₅, Cu₆₀Ag₄₀ and Cu syntheses in respective order. All nanoparticles demonstrated increases in the catalytic activity ranging between 15-26% under white light illumination, attributed to plasmonic promotion. The best plasmonic promotion of 26% was observed in the CuAg commercial alloy. Meanwhile, the best promotion of the synthesized bimetallic particles was of 18% found in the Cu₆₀Ag₄₀ catalyst. Additionally, improved electrochemical and plasmonic stability was observed with the use of the Cu-Ag bimetallic synthesized structures compared to monometallic Cu. In addition, most studies pertaining CO₂ER involve aqueous electrolytes due to their low cost and low toxicity. However, these systems are hindered by mass transfer limitations due to the low solubility of CO₂ in water. Organic-based electrolytes have been subjects of research as they possess higher CO₂ solubilities to water. As dinitriles pose a novelty in the role of CO₂ER, dinitrile-based electrolytes were studied and tested for the application. It was hypothesized that due to the decreased polarity in dinitrile solvents, CO₂ concentrations in the electrolyte would increase leading to improved catalytic activity. The testing was conducted by evaluating and comparing acetonitrile (ACN), adiponitrile (ADN) and sebaconitrile (SBN) solvent-based electrolytes. Increased CO₂ solubility was observed in the dinitriles with 582 mM and 503 mM of dissolved CO₂ in ADN and SBN respectively, compared to 270 mM in ACN. Results were corroborated through DFT modelling, indicating preference of CO₂ absorbance to nitrile groups on the molecules. However, despite increases in CO₂ concentration, the electrochemical activity decreased from ACN > ADN > SBN. The trend in activity was observed to be inversely proportional to the viscosity of the dinitrile solvents, which affected the ionic conductivity. Based on these developments, the present thesis opens a new perspective for the use of Cu-based nanoparticles for direct plasmonic enhancement with the use of a broad-range wavelength white light. Furthermore, the work also sheds light on the properties and resulting electrocatalytic activities of the use of dinitrile organic electrolytes for CO₂ER. The presented findings provide significant groundwork for further developments in the realm of CO₂ER.
173

Microscopie de fluorescence résolue en temps et en polarisation pour le suivi d’interactions protéiques en neurobiologie / Time and polarisation resolved microscopy to follow proteins interactions in neurobiology

Devauges, Viviane 15 December 2011 (has links)
Le suivi des interactions entre protéines, localisées à la membrane plasmique ou à l’intérieur de cellules, a été réalisé au cours de cette thèse par imagerie de fluorescence et par l’analyse de processus dits de FRET (Forster Resonance Energy Transfer). Pour quantifier le FRET entre nos protéines d’intérêt, nous avons choisi le contraste de durée de vie de fluorescence car cette méthode est indépendante de la concentration et de l’intensité de fluorescence. Afin d’obtenir une résolution suffisante pour des problématiques neurobiologiques, un microscope TIRFLIM (Total Internal Reflection Fluorescence Lifetime Imaging Microscopy) avait préalablement été développé. Celui-ci nous permet de faire de l’imagerie en plein champ avec une résolution axiale sub-longueur d’onde. Ce dispositif a été calibré et optimisé au cours de cette thèse pour répondre au mieux à des problématiques biologiques. Différentes approches ont ainsi été testées dans le but de calibrer la profondeur de pénétration de l’onde évanescente. Des surfaces plasmoniques ont entre autres été utilisées pour augmenter la sélectivité axiale du montage. Notre microscope a été dédié à l’étude de l’effet du cholestérol sur l’interaction entre la protéine précurseur de l’amyloïde APP, protéine transmembranaire impliquée dans la maladie d’Alzheimer et une de ses enzymes de clivage BACE1. Nous avons ainsi effectué un suivi dynamique de l’effet du cholestérol sur l’interaction entre APP et BACE1 dans des cellules HEK-293 et dans des cultures primaires de neurones d’hippocampe d’embryons de rat, de la membrane plasmique à l’intérieur des cellules grâce à notre dispositif TIRFLIM. La mesure d’anisotropie de fluorescence résolue en temps a également été implémentée sur notre montage. Ces mesures résolues en temps et en polarisation ont permis de mesurer le temps de corrélation rotationnelle de fluorophores et de mettre en évidence de manière qualitative différents niveaux d’homodimérisation de protéines impliquées dans la maladie d’Alzheimer. / In the framework of this thesis, we have used FRET (Forster Resonance Energy Transfer) as a mechanism to follow the interaction of proteins from the plasma membrane to the cytoplasm of cells. To quantify FRET, we have chosen Fluorescence Lifetime Imaging Microscopy (FLIM) since this method is independent of the concentration and intensity of the fluorophores. To have a good axial resolution, a TIRFLIM set-up (Total Internal Reflection Fluorescence Lifetime Imaging Microscopy) was developed and this allowed us to perform wide-field imaging with sub-wavelength axial resolution. This set-up was calibrated and optimized in order to answer biological questions. Different approaches were tested in order to measure the penetration depth of the evanescent field and especially plasmonic surfaces were used to further enhance the axial resolution. Our set-up was dedicated to the study of the effect of cholesterol on the interaction between the Amyloid Precursor Protein (APP), a transmembrane protein involved in Alzheimer Disease, and one of its cleaving enzyme (BACE1). We performed a dynamic tracking of APP and BACE1 proximity under the effect of cholesterol, in HEK-293 cells and primary cultures of embryonic rat hippocampal neurons, thanks to our TIRFLIM set-up.Time-resolved fluorescence anisotropy has been implemented on our set-up. This has enabled us to measure the rotational correlation time of fluorophores and to investigate quantitatively different states of homodimerization of proteins involved in Alzheimer’s disease.
174

Near-field spectroscopy of semiconductor device structures and plasmonic crystals

Malyarchuk, Viktor 31 August 2004 (has links)
Wir erforschen r?umlich Modenprofile in Wellenleitern mit Submikrometerabmessungen. Daf?r wird die optische Nahfeldmikroskopie in Kombination mit durchstimmbaren Laseranregungsquellen eingesetzt. Wir zeigen, wie das Nano-Photolumineszenzsignal von den Facetten von Quantentroglasern benutzt werden kann, um in diesem Bereich Oberfl?chenrekombination und Diffusionsl?ngeunabh?ngig voneinander zu bestimmen. Damit werden wichtige Informationen ?ber Haftstellen und deren Konzentration an Bauelementeoberfl?chen gewonnen. Eigenmoden in quasi-2-dimensionalen plasmonischen Kristallen sowie ihre Bandstruktur werden direkt gemessen und abgebildet. Messungen der Relaxation der Oberfl?chenplasmonanregung in der Raum- und Zeitdom?ne erlauben die Aufkl?rungder mikroskopischen Natur der Oberfl?chenplasmonemission. / Methods of the near-field spectroscopy combined with tunable laser excitation was used in order to perform investigation of the modeprofiles of submicron-sized waveguides in semiconductor device lasers. It was shown that the nano-photoluminescence signal at facets of a quantum well laser can be used to obtain surface recombination velocity and diffusion length independently and provide important information about concentration of trap-like defect states. Eigenmodes of the quasi-two-dimensional plasmonic crystals as well as their dispersion relations were directly mapped. The temporal and spatial domain measurement of the damping time of the surface plasmon excitation allow to reveal microscopic origins of surface plasmon radiation in such suchstructures.
175

Developing New Strategies for the Preparation of Micro- and Nano-structured Polymer Materials

Nie, Zhihong 19 January 2009 (has links)
This thesis described the development of new strategies for the preparation of micro- and nano-structured polymer materials. In particular, this thesis focused on: i) the synthesis of polymer particles in microreactors, and ii) the self-assembly of inorganic nanorods. First, this thesis presented the synthesis of polymer particles and capsules with pre-determined sizes and narrow size distributions (CV<2%) in continuous microfluidic reactors. The method includes (i) the emulsification of monomers in a microfluidic flow-focusing device and (ii) in-situ solidification of droplets via photopolymerization. This microfluidic synthesis provides a novel strategy for the control over the shapes, compositions, and morphologies of polymer particles. In particular, we demonstrated the control over particle shapes by producing polymer ellipsoids, disks, rods, hemispheres, plates, and bowls. We produced polymer particles loaded with dyes, liquid crystals, quantum dots, and magnetic nanoparticles. We generated core-shell particles, microcapsules, Janus and three-phasic polymer particles. Control over the number of cores per droplet was achieved by manipulating the flow rates of liquids in the microchannels. We further investigated the hydrodynamic mechanism underlying the emulsification of droplets, which helps in guiding scientists and engineers to utilize this technique. Second, we described the self-assembly of inorganic nanorods by using a striking analogy between amphiphilic ABA triblock copolymers and the hydrophilic nanorods tethered with hydrophobic polystyrene chains at both ends. We organized metal nanorods in structures with various geometries such as nanorings, nanochains, bundles, bundled nanochains, and nanospheres by tuning solely the quality of solvents. The self-assembly was tunable and reversible. This approach paved the way for the organization of anisotropic nanoparticles by using the strategies that are well-established for the self-assembly of block copolymers. We further described a systematic study of the self-assembly of polymer-tethered gold nanorods as a function of solvent composition in the system and the molecular weight of the polystyrene blocks. We found that the structure of the polymer pom-poms played an important role on the organization of polymer-tethered gold NRs. The 'supramolecular' assembly was governed by the competition between the end-to-end and side-by-side association of NRs and resulted in the controlled variation of the plasmonic properties of NRs, reflected in a 3-D plasmonic graph.
176

Developing New Strategies for the Preparation of Micro- and Nano-structured Polymer Materials

Nie, Zhihong 19 January 2009 (has links)
This thesis described the development of new strategies for the preparation of micro- and nano-structured polymer materials. In particular, this thesis focused on: i) the synthesis of polymer particles in microreactors, and ii) the self-assembly of inorganic nanorods. First, this thesis presented the synthesis of polymer particles and capsules with pre-determined sizes and narrow size distributions (CV<2%) in continuous microfluidic reactors. The method includes (i) the emulsification of monomers in a microfluidic flow-focusing device and (ii) in-situ solidification of droplets via photopolymerization. This microfluidic synthesis provides a novel strategy for the control over the shapes, compositions, and morphologies of polymer particles. In particular, we demonstrated the control over particle shapes by producing polymer ellipsoids, disks, rods, hemispheres, plates, and bowls. We produced polymer particles loaded with dyes, liquid crystals, quantum dots, and magnetic nanoparticles. We generated core-shell particles, microcapsules, Janus and three-phasic polymer particles. Control over the number of cores per droplet was achieved by manipulating the flow rates of liquids in the microchannels. We further investigated the hydrodynamic mechanism underlying the emulsification of droplets, which helps in guiding scientists and engineers to utilize this technique. Second, we described the self-assembly of inorganic nanorods by using a striking analogy between amphiphilic ABA triblock copolymers and the hydrophilic nanorods tethered with hydrophobic polystyrene chains at both ends. We organized metal nanorods in structures with various geometries such as nanorings, nanochains, bundles, bundled nanochains, and nanospheres by tuning solely the quality of solvents. The self-assembly was tunable and reversible. This approach paved the way for the organization of anisotropic nanoparticles by using the strategies that are well-established for the self-assembly of block copolymers. We further described a systematic study of the self-assembly of polymer-tethered gold nanorods as a function of solvent composition in the system and the molecular weight of the polystyrene blocks. We found that the structure of the polymer pom-poms played an important role on the organization of polymer-tethered gold NRs. The 'supramolecular' assembly was governed by the competition between the end-to-end and side-by-side association of NRs and resulted in the controlled variation of the plasmonic properties of NRs, reflected in a 3-D plasmonic graph.
177

Plasmonic Nanostructures for Solar and Biological Application

Neumann, Oara 16 September 2013 (has links)
The electromagnetic absorption properties of plasmonic nanostructures were utilized to develop mesoscopic sites for highly efficient photothermal generation steam, SERS biosensing, and light-triggered cellular delivery uptake. Plasmonic nanostructures embedded in common thermal solutions produces vapor without the requirement of heating the fluid volume. When particles are dispersed in water at ambient temperature, energy is directed primarily to vaporization of water into steam, with a much smaller fraction resulting in heating of the fluid. Solar illuminated aqueous nanoparticle solution can drive water-ethanol distillation, yielding fractions significantly richer in ethanol content than simple thermal distillation and also produced saturated steam destroying Geobacillus stearothermophilus bacteria in a compact solar powered autoclave. Subwavelength biosensing sites were developed using the plasmonic properties of gold nanoshells to investigate the properties of aptamer (DNA) target complexes. Nanoshells are tunable core-shell nanoparticles whose resonant absorption and scattering properties are dependent on core/shell thickness ratio. Nanoshells were used to develop a label free detection method using SERS to monitor conformational change induced by aptamer target binding. The conformational changes to the aptamers induced by target binding were probed by monitoring the aptamer SERS spectra reproducibility. Furthermore, nanoshells can serve as a nonviral light-controlled delivery vector for the precise temporal and spatial control of molecular delivery in vitro. The drug delivery concept using plasmonic vectors was shown using a monolayer of ds-DNA attached to the nanoshell surface and the small molecular “parcel” intercalated inside ds-DNA loops. DAPI, a fluorescent dye, was used as the molecular parcel to visualize the release process in living cells. Upon laser illumination at the absorption resonance the nanoshell converts photon energy into heat producing a local temperature gradient that induces DNA dehybridization, releasing the intercalated molecules.
178

Synthesis and Applications of Dynamic Multivalent Nanostructures

Neranon, Kitjanit January 2015 (has links)
This thesis focuses on the design, synthesis and development of dynamic multivalent nanostructures such as supramolecular dendrimers, liposomes and gold-functionalized nanostructures. These structures can be used for drug delivery and molecular sensing applications. This thesis is divided into three parts: In part one, a general introduction to self-assembly, dynamic systems, metalligand exchange, nanostructured dendritic scaffolds, liposomes and gold nanostructures is given. In part two, a microwave approach is presented as an efficient method for the regioselective deuteration of bipyridine scaffolds. Dynamic systems based on transition metal-bipyridine coordination complexes were investigated. The compositional self-adaptation and kinetics of these dynamic systems were successfully assessed by ESI-MS. Based on this amphiphilic dendrimers/metallodendrimers were also designed and synthesized via  a convergent strategy. Their ability to self-assemble into supramolecular assemblies and their controlled disassembly was effectively demonstrated. In part three, two types of drug delivery systems based on dynamic multivalent nanostructures of glycodendrimers/metalloglycodendrimers and drugpresenting liposomes were developed. The dynamic self-assembly of these architectures into supramolecular nanostructures with site-specific functionality through interacting carbohydrate or cholesterol moieties was assessed. The host-guest interaction/encapsulation and controlled release with external stimuli were studied using a fluorescent probe, as well as selected drug molecules. The antibacterial property of the drug delivery systems was also evaluated, demonstrating an enhanced bactericidal activity. A new, rapid and simple approach for the functionalization of plasmonic gold nanostructured surfaces was also developed. The optical performance and light-specific sensitivity of the fluorescent probe on the resulting nanostructures were also presented. / <p>QC 20151119</p>
179

Plasmonic properties of subwavelength structures and their applications in optical devices

Wang, Wei, 1983 July 24- 09 February 2011 (has links)
A metallic hole array of a rectangular converging-diverging channel (RCDC) shape exhibits extraordinary transmission for wavelengths larger than the periodicity of the holes. We use a three-dimensional (3D) finite element method to analyze the transmission characteristics of two-dimensional metallic hole arrays (2D-MHA) with RCDC. For a straight channel MHA, when the aperture size is reduced, the transmission peaks have a blue-shift. The same result is observed for a smaller gap throat for the RCDC structure. For the rectangular holes with a high length-width ratio, a similar blue-shift in the transmission peaks as well as a narrower full width at half maximum (FWHM) are observed. The asymmetry from the rectangular shape gives this structure high selectivity for light with different polarizations. Furthermore, the RCDC shape gives extra degrees of geometrical variables to 2D-MHA for tuning the location of the transmission peak and the FWHM. Tunable extraordinary transmission via changing temperature of a porous metallic layer on top of a thin layer of dielectric strontium titanate (STO) is then studied. The metallic layer has a through-hole array and each hole has a circular converging-diverging channel (CDC) shape, which induces the excitation of surface plasmon polaritons (SPPs) and then results in a controllable extraordinary optical transmission in the terahertz (THz) frequency range. We use a three-dimensional (3D) finite element method to analyze the transmission characteristics of the structure. Location and magnitude of the transmission peaks can be adjusted by the hole size, converging angle, and thicknesses of metal and STO layers. Remarkably, the suggested structure presents a strong transmission dependency on temperature, which offers a new approach to actively and externally tune the transmission. Currently, the performances of thin film solar cells are limited by poor light absorption and carrier collection. In this research, large, broadband, and polarization-insensitive light absorption enhancement is realized via integrating with unique metallic nanogratings. Through simulation, three possible mechanisms are identified to be responsible for such an enormous enhancement. A test for totaling the absorption over the solar spectrum shows an up to ~30% broadband absorption enhancement when comparing to bare thin film cells. Overall performance of a thin film solar cell is determined by the efficiency of conversing photons to electrons that include light absorption, carrier generation and carrier collection processes. Photon management via hybrid designing has been emerging as a powerful means to further boost the conversion efficiency. Here a new nanograting solar cell design, which can be universal and a new solar cell platform technology, is proposed with goals to achieve large enhancement on broadband light absorption and carrier generation, most importantly, under the much reduced usage of active and non-earth-abundant materials. A test for the short circuit current density in CuIn[subscript x]Ga([subscript 1-x])Se₂ (CIGS) thin film solar cells shows an up to ~250% enhancement when comparing to the corresponding bare thin film cells. Besides that, by placing metal strips on top of the nanograting, which act as the top electrode, this design is able to reduce the use of non-earth-abundant materials such as indium that is normally used in both active and transparent conducting materials. / text
180

Optical scattering from nanoparticle aggregates

Travis, Kort Alan 09 February 2011 (has links)
Nanometer-scale particles of the noble metals have been used for decades as contrast enhancement agents in electron microscopy. Over the past several years it has been demonstrated that these particles also function as excellent contrast agents for optical imaging techniques. The resonant optical scattering they exhibit enables scattering cross sections that may be many orders of magnitude greater than the analogous efficiency factor for fluorescent dye molecules. Biologically relevant labeling with nanoparticles generally results in aggregates containing a few to several tens of particles. The electrodynamic coupling between particles in these aggregates produces observable shifts in the resonance-scattering spectrum. This dissertation provides a theoretical analysis of the scattering from nanoparticle aggregates. The key objectives are to describe this scattering behavior qualitatively and to provide numerical codes usable for modeling its application to biomedical engineering. Considerations of the lowest-order dipole-dipole coupling lead to simple qualitative predictions of the behavior of the spectral properties of the optical cross sections as they depend on number of particles, inter-particle spacing, and aggregate aspect ratio. More comprehensive analysis using the multiple-particle T-matrix formalism allows the elaboration of more subtle cross-section spectral features depending on the interactions of the electrodynamic collective-modes of the aggregate, of individual-particle modes, and of modes associated with groups of particles within the aggregate sub-structure. In combination these analyses and the supporting numerical code-base provide a unified electrodynamic approach which facilitates interpretation of experimental cross section spectra, guides the design of new biophysical experiments using nanoparticle aggregates, and enables optimal fabrication of nanoparticle structures for biophysical applications. / text

Page generated in 0.0413 seconds