• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 74
  • 16
  • 3
  • 2
  • 1
  • Tagged with
  • 88
  • 88
  • 23
  • 23
  • 22
  • 21
  • 18
  • 16
  • 15
  • 14
  • 13
  • 10
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Plasmonic properties of silver-based alloy thin films

Ching, Suet Ying 13 February 2015 (has links)
The plasmonic properties of silver-based alloy thin films were studied. Silver-ytterbium (Ag-Yb) and silver-magnesium (Ag-Mg) prepared by thermal co-evaporation were investigated extensively for various thin film properties. The optical properties were intensively analyzed and discussed because the dielectric response of a material is particularly significant in terms of its plasmonic properties. The study of silver-based alloy thin films has been mostly about Ag alloying with other transition metals, but the results of Ag-Yb and Ag-Mg in this work showed that the intensity of plasma resonance is tunable, in which the idea may also apply to other silver-rich binary alloy thin films regardless of the kind of second metal components. In our research, the Ag plasma resonance was weakened with respect to the concentration of Yb and Mg in the alloy thin films. The change in the optical characteristics around Ag plasma resonance frequency was attributed to an increase in “resonance damping. This is confirmed from modeling using classical free-electron theory. The increase in the damping was experimentally corroborated by the concentration dependence of electrical conductivity and estimated average crystallite size of Ag-Yb and Ag-Mg thin films. The reduction in electrical conductivity was not only caused by introducing less conductive Yb or Mg but also through disturbing the Ag lattice structure to promote additional electron scattering at grain boundaries. The Ag-Yb and Ag-Mg alloys carried intermediate properties between their pure components despite the presence of Yb or Mg oxides. Besides optical and electrical properties, changes in the electronic work function were also assessed since it is also important in applications. Plasmonic nanostructures and transparent organic light-emitting diodes (OLEDs) were fabricated to demonstrate their potential applications. Two-dimensional disc-arrays nanostructures composed of pure Ag and Ag-Yb were implemented to evaluate the plasmonic properties. The damping loss in Ag-Yb caused weakened coupling of incident photons and surface plasmons when compared to pure Ag without altering the coupling wavelengths, suggesting potential plasmonic materials for tuning the coupling strength of surface plasmons by controlling the concentration of Yb which may also apply to Ag-Mg. Ultrathin Ag-Yb and Ag-Mg films were used as cathodes in transparent OLEDs for demonstration, which was beneficial by virtue of overall device transmittance though sacrificing electrical conduction leading to poor light emission unless inserting additional ultrathin lithium fluoride to modify the ultrathin cathodes.
52

Plasmon Enhanced Near-field Interactions In Surface Coupled Nanoparticle Arrays For Integrated Nanophotonic Devices

Ghoshal, Amitabh 01 January 2010 (has links)
The current thrust towards developing silicon compatible integrated nanophotonic devices is driven by need to overcome critical challenges in electronic circuit technology related to information bandwidth and thermal management. Surface plasmon nanophotonics represents a hybrid technology at the interface of optics and electronics that could address several of the existing challenges. Surface plasmons are electronic charge density waves that can occur at a metal-dielectric interface at optical and infrared frequencies. Numerous plasmon based integrated optical devices such as waveguides, splitters, resonators and multimode interference devices have been developed, however no standard integrated device for coupling light into nanoscale optical circuits exists. In this thesis we experimentally and theoretically investigate the excitation of propagating surface plasmons via resonant metal nanoparticle arrays placed in close proximity to a metal surface. It is shown that this approach can lead to compact plasmon excitation devices. Full-field electromagnetic simulations of the optical illumination of metal nanoparticle arrays near a metal film reveal the presence of individual nanoparticle resonances and collective grating-like resonances related to propagating surface plasmons within the periodic array structure. Strong near-field coupling between the nanoparticle and grating resonances is observed, and is successfully described by a coupled oscillator model. Numerical simulations of the effect of nanoparticle size and shape on the excitation and dissipation of surface plasmons reveal that the optimum particle volume for efficient surface plasmon excitation depends sensitively on the particle shape. This observation is quantitatively explained in terms of the shape-dependent optical cross-section of the nanoparticles. iv Reflection measurements on nanoparticle arrays fabricated using electron-beam lithography confirm the predicted particle-grating interaction. An unexpected polarizationdependent splitting of the film-mediated collective resonance is successfully attributed to the existence of out-of plane polarization modes of the metal nanoparticles. In order to distinguish between the excitation of propagating surface plasmons and localized nanoparticle plasmons, spectrally resolved leakage radiation measurements are presented. Based on these measurements, a universally applicable method for measuring the wavelength dependent efficiency of coupling free-space radiation into guided surface plasmon modes on thin films is developed. Finally, it is shown that the resonantly enhanced near-field coupling the nanoparticles and the propagating surface plasmons can lead to optimized coupler device dimensions well below 10 m.
53

Metal Blacks As Scattering Centers To Increase The Efficiency Of Thin Film Solar Cells

Panjwani, Deep R 01 January 2011 (has links)
Metal nano particles are investigated as scattering centers on front surface of thin-film solar cells to improve efficiency. The principle is that scattering, which is enhanced near the plasmon resonance frequency of the particle and depends on particle size, increases the effective optical path length of incident light, leading to more light absorption in active layer of thin film solar cell. The particular types of particles investigated here are known as "metal-black", well known as an IR absorber for bolometric infrared detectors. Gold-black was deposited on commercial thin-film solar cells using a thermal evaporator in a nitrogen ambient at pressures of ~1 Torr. We suggest that the broad range of length scales for gold black particles, as quantified by scanning electron microscopy, gives rise to efficient scattering over a broad range of wavelengths across the solar spectrum. The solar cell efficiency was determined both as a function of wavelength and for a solar spectrum produced by a Xe lamp and appropriate filters. Up to 20% increase in short-circuit photocurrent, and a 7% increase in efficiency at the maximum power point, were observed.
54

Applications of Coupled Cluster Theory to Models of Extended Systems of Fermions

Callahan, James Michael January 2022 (has links)
This thesis describes the application of coupled-cluster theory to model systems of metallic solids and cold-atom gases. First, I give an overview of both ground- and excited-state coupled cluster theory as background for the main topics in this thesis. Next, I evaluate the accuracy of several cost-saving approaches in estimating the coupled cluster correlation energy for a model metallic system, the uniform electron gas, in the complete basis set and thermodynamic limits. After that, I present calculations of the spectral function of the uniform electron gas in these same limits, the results of which are rationalized by applying a bosonized coupled-cluster theory to an approximate, simplified Hamiltonian that couples plasmons to a structureless core hole state. Finally, I show how coupled-cluster theory captures the many-body nature of two-component Fermi gases with tunable, attractive interactions.
55

Flexible membranes for nanoplasmonic applications

Reader-Harris, Peter January 2015 (has links)
Nanoplasmonics has provided a way to control light with extremely high precision, into nanoscale volumes. In many circumstances, the nanoplasmonic devices which can be realised are fabricated using processing techniques which rely on planar technologies. This thesis provides a general method to make nanoplasmonic devices on a flexible membrane structure, which can be free standing, extremely thin (less than the wavelength of visible light), but retains the ability to be manipulated without loss of optical function. These devices are very pliant and conformable. Flexibility allows the integration of nanoplasmonic devices into many new applications where curved surfaces or the ability to conform to another object is required, as well as providing a route for post-fabrication tunability. Two specific applications are considered: lab-on-fibre technology and surface enhanced Raman spectroscopy. Lab-on-fibre technologies have been advancing the ability to miniaturise experiments which would normally require a whole laboratory. Fabricating a membrane and then later applying it to the fibre decouples the choice of fibre from the design of the device. Surface enhanced Raman spectroscopy is a powerful diagnostic tool which can uniquely identify an optical fingerprint of different molecules. The technique has been held back from widespread clinical adoption because of the difficulty of reproducibility of the substrates used. A repeatable and reliable rigid substrate is demonstrated, which can identify the concentration of a three component mixture of physiologically relevant biomolecules. This same design is then shown in a flexible form factor, which is applied to a non-planar landscape where it can identify the locations where a molecule of interest has been deposited. This thesis details the development of the fabrication protocol, the construction of experimental apparatus for characterisation, and the use of numerical modelling to advance the flexible nanoplasmonic membrane platform.
56

Mesoporous materials for optical applications and plasmon-fluorophore interactions. / 介孔材料的光學應用和表面等離子體-熒光分子之間相互作用 / CUHK electronic theses & dissertations collection / Mesoporous materials for optical applications and plasmon-fluorophore interactions. / Jie kong cai liao de guang xue ying yong he biao mian deng li zi ti - ying guang fen zi zhi jian xiang hu zuo yong

January 2011 (has links)
Zhao, Lei = 介孔材料的光學應用和表面等離子體-熒光分子之間相互作用 / 趙磊. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / Zhao, Lei = Jie kong cai liao de guang xue ying yong he biao mian deng li zi ti - ying guang fen zi zhi jian xiang hu zuo yong / Zhao Lei.
57

Plasmon-modulated light scattering from gold nanocrystal-decorated hollow mesoporous silica microspheres. / 金納米晶修飾的空心介孔二氧化矽微球在表面等離子體激元調製下的光散射行為 / Plasmon-modulated light scattering from gold nanocrystal-decorated hollow mesoporous silica microspheres. / Jin na mi jing xiu shi de kong xin jie kong er yang hua xi wei qiu zai biao mian deng li zi ti ji yuan diao zhi xia de guang san she xing wei

January 2010 (has links)
Xiao, Manda = 金納米晶修飾的空心介孔二氧化矽微球在表面等離子體激元調製下的光散射行為 / 肖蔓達. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references. / Abstracts in English and Chinese. / Xiao, Manda = Jin na mi jing xiu shi de kong xin jie kong er yang hua xi wei qiu zai biao mian deng li zi ti ji yuan diao zhi xia de guang san she xing wei / Xiao Manda. / Abstract --- p.i / 摘要 --- p.iii / Acknowledgement --- p.iv / Table of Contents --- p.vi / List of Figures --- p.viii / List of Tables --- p.x / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Plasmonic Properties of Noble Metal Nanocrystals --- p.1 / Chapter 1.2 --- Light Scattering from Dielectric Spheres --- p.6 / Chapter 1.3 --- Motivations and Outline of the Thesis --- p.9 / Chapter 2 --- Characterization Techniques --- p.17 / Chapter 2.1 --- Instrumentation --- p.17 / Chapter 2.2 --- Extinction Measurement of Au Nanocrystals and the HMSMSs Decorated with the Au Nanocrystals --- p.17 / Chapter 2.3 --- Sample Preparation for the TEM and SEM Characterization --- p.18 / Chapter 2.4 --- Dark-Field Imaging and Spectroscopy of the Individual Microspheres --- p.19 / Chapter 3 --- Fabrication of Hollow Mesoporous Silica Microspheres Decorated with the Au Nanocrystals --- p.25 / Chapter 3.1 --- Preparation of the Hollow Mesoporous Silica Microspheres --- p.25 / Chapter 3.2 --- Growth of the Au Nanocrystals --- p.29 / Chapter 3.3 --- Assembly of the Au Nanocrystals onto the Hollow Mesoporous Silica Microspheres --- p.32 / Chapter 4 --- Resonant Scattering Properties of the Hollow Mesoporous Silica Microspheres --- p.38 / Chapter 4.1 --- Experimental Results --- p.38 / Chapter 4.2 --- Calculation of the Scattering Spectra by Mie Theory --- p.42 / Chapter 4.3 --- Summary --- p.46 / Chapter 5 --- Resonant Scattering Properties of the Au Nanocrystal-Decorated Hollow Mesoporous Silica Microspheres --- p.49 / Chapter 5.1 --- Effect of the Plasmon Resonances of the Au Nanocrystals on the Resonant Scattering Behaviors of the HMSMSs --- p.49 / Chapter 5.2 --- Estimation of the Scattering Enhancement Factors --- p.54 / Chapter 5.3 --- Summary --- p.59 / Chapter 6 --- Summary --- p.61
58

Surface plasmons for enhanced thin-film silicon solar cells and light emitting diodes

Pillai, Supriya, School of Photovoltaic & Renewable Energy Engineering, UNSW January 2007 (has links)
Photovoltaics (PV) is fast emerging as an attractive renewable energy technology due to concerns of global warming, pollution and scarcity of fossil fuel supplies. However to compete in the global energy market, solar cells need to be cheaper and more energy efficient. Silicon is the favorite semiconductor used in solar photovoltaic cells because of its ubiquity and established technology, but due to its indirect bandgap silicon is a poor absorber and light emitter. Thin film cells play an important role in low cost photovoltaics, but at the cost of reduced efficiencies when compared to wafer based cells. There remains much untapped potential in thin-film solar cells which this work has attempted to exploit through exploring novel approaches of enhancing the efficiency of thin film cells using the optical properties of sub-wavelength metal nanoparticles. Metals are considered as strong absorbers of light because of their large free-electron density. How can metals improve light trapping in solar cells? This question has raised several eyebrows and this thesis is an attempt to show that metal nanoparticles can be useful in producing efficient solar cells. Subwavelength metal particles support surface modes called surface plasmons when light is incident on them, which cause the particles to strongly scatter light into the underlying waveguide or substrate, enhancing absorption. The process of coupling thin film silicon waveguide modes to plasmonic metals using unpolarised light at normal incidence is applied to silicon-based solar cells and light emitting diodes, and enhanced photocurrent and electroluminescence is realized with potential for further optimisation and improvement. The results from this study correspond to a current increase of up to 19% from planar wafer based cells and up to 33% increase from 1.25 micron thin-film silicon-on-insulator structures for the AM1.5 global spectrum. We also report for the first time an up to twelve fold increase in electroluminescence signal from 95nm thick light-emitting diodes. From the results we conclude that this method which involves simple techniques of nanoparticle deposition and characterization could hold important implications in the improvement of thin-film silicon cell absorption / emission efficiencies where conventional methods of light trapping are not feasible, resulting in promising near-term applications of surface plasmons in photovoltaics and optoelectronics.
59

The extraordinary infrared transmission of metal microarrays for enhanced absorption spectroscopy of monolayers, nanocoatings, and catalytic surface reactions

Rodriguez, Kenneth Ralph, January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 361-380).
60

Plasmonic field effects of silver nanoparticle monolayers on poly(phenylene ethynylene) fluorescent polymers of different chain length

Poncheri, Adam James 23 May 2011 (has links)
The literature on nanomaterials has been flooded with new shapes, sizes, and compositions of nanostructures. The process of developing and characterizing these particles has been broadly accomplished and many interesting and promising properties have been revealed for application in current and developing technologies. In particular, the phenomenon of surface plasmon resonance seen in metallic gold and silver nanoparticles has drawn substantial interest. It has been established that the electromagnetic fields surrounding plasmonic particle surfaces can influence the properties of nearby systems, causing them to experience effects such as enhanced absorption and emission of light or drastically increased conductivity. For this reason, plasmonic nanoparticles are being applied to an endless number of applications for new materials. This thesis investigated the effects of silver nanocube (AgNC) arrays on the photophysical properties of poly(paraphenyleneethynylene) (PPE) fluorescent polymers, a particularly relevant material to the applications of organic-electronics. AgNCs were selected because of their particularly strong plasmonic field, which is enhanced at the sharp features of the cubes. The PPE polymer is an exceptionally fluorescent conjugated polymer that often serves as a building block for polymer-based sensing applications. By monitoring the absorption and emission of the PPE polymer, a better understanding of plasmonic effects on this polymer system was obtained. Compression of the monolayer of AgNCs on the surface of a Langmuir-Blodgett trough can be used for control of interparticle distance and, thus, the plasmon field intensity felt by an adsorbed layer of PPE polymer. In the Chapter 4, PPE (n = 15) emission was monitored as a function of the AgNC plasmonic field. A two-photon process was found to explain the unusual increase then decrease of the fluorescence intensity. This observation was attributed to exciton-exciton annihilation processes within the polymer. The annihilation process is initiated by large enhancements of the polymer absorption rate when plasmonic fields are at their highest (when the AgNCs are compressed to short interparticle distances). In chapter 5, the optical properties of PPE polymers as a function of their chain length and the AgNC density were examined. A simple study was conducted to consider the conformational/geometrical effects on PPE that were caused by the deposition of PPE onto the AgNC topography. In this study, the structure of the absorption and emission profiles were evaluated and used as evidence of polymer interchain interactions, planarization, and even the potential generation of oligomeric species through breaking of conjugation. Fundamental interactions between materials must be evaluated and optimized prior to their use in devices. This thesis serves to shed a little bit of light on the interaction of a well-defined plasmonic particle with a conjugated polymer. The Langmuir-Blodgett technique serves as a critical tool in applying these colloidally produced nanoparticles to 2D arrays in practical applications. The observation of exciton-exciton annihilation at low-energy excitation is an entirely new phenomenon that was initiated by the plasmonic properties of metal nanoparticles. It is the hope of the author that the results contained herein can aide in the use of plasmonic nanoparticles in future devices.

Page generated in 0.0367 seconds