• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 73
  • 16
  • 3
  • 2
  • 1
  • Tagged with
  • 87
  • 87
  • 23
  • 23
  • 22
  • 21
  • 18
  • 16
  • 15
  • 14
  • 13
  • 10
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

A chemical sensor based on surface plasmon resonance on surface modified optical fibers

Bender, William John Havercamp 24 October 2005 (has links)
A sensor is described which utilizes the phenomenon of surface plasmon resonance to detect changes in refractive index of chemical or biochemical samples applied to a surface modified optical fiber. The sensor is constructed by polishing a short section of the lateral surface of an optical fiber to its evanescent field surrounding the fiber core. One or more thin films are applied to the polished section of the fiber to produce the sensing element. One of the films is the metal silver, which acts as the support for the surface plasmon. Under the proper conditions, TM polarized energy propagating in the fiber can be coupled to a surface plasmon electromagnetic mode on the metal film. This coupling depends on the wavelength, the nature of the fiber, the refractive index and thickness of the thin films applied to the fiber, and the refractive index of a chemical sample in contact with the modified surface. The fiber to plasmon coupling is seen as a large attenuation of the light reaching the distal terminus of the fiber. / Ph. D.
72

Influence of the Local Dielectric Environment and its Spatial Symmetry on Metal Nanoparticle Surface Plasmon Resonances

Torrance, David 01 January 2007 (has links)
This project examines how the collective oscillation of electrons in optically excited metal nanoparticles ( diameter < 100 nm) is affected by the presence of different dielectric environments. When coupled with material polarization, these collective oscillations are known as a Surface Plasmon Polaritons (SPPs), which preferentially absorb and scatter light at a specific frequency satisfying the Local Surface Plasmon Resonance (LSPR) condition. Surface plasmons on metal nanoparticles are widely studied for use in optical labeling, ultrasensitive biodetection, and thermally activated tissue treatment. In general Mie theory can be used to accurately model the optical behavior of ideal spherical particles in a homogeneous environment. However, many experiments involving LSPRs deal with metal nanoparticles in inhomogeneous environments; a typical experimental procedure involves the deposition of a colloidal suspension of metal nanoparticles directly onto a substrate. This project explains how the LSPR of nanoparticles deposited onto planar substrates depends upon the polarization of incident radiation, and demonstrates evidence of resonance tuning by comparing the optical response in various dielectric environments.
73

UV Magnetic Plasmons in Cobalt Nanoparticles

Bhatta, Hari Lal 05 1900 (has links)
The main goals of this research were to fabricate magnetic cobalt nanoparticles and study their structural, crystal structure, optical, and magnetic properties. Cobalt nanoparticles with average particle size 8.7 nm were fabricated by the method of high temperature reduction of cobalt salt utilizing trioctylphosphine as a surfactant, oleic acid as a stabilizer, and lithium triethylborohydride as a reducing reagent. Energy-dispersive X-ray spectroscopy (EDX) analysis confirmed the formation of cobalt nanoparticles. High resolution transmission electron microscopy images show that Co NPs form both HCP and FCC crystal structure. The blocking temperature of 7.6 nm Co NPs is 189 K. Above the blocking temperature, Co NPs are single domain and hence showed superparamagnetic behavior. Below the blocking temperature, Co NPs are ferromagnetic. Cobalt nanoparticles with a single-domain crystal structure support a sharp plasmon resonance at 280 nm. Iron nanoparticles with average particle size 4.8 nm were fabricated using chemical reduction method show plasmon resonance at 266 nm. Iron nanoparticles are ferromagnetic at 6 K and superparamagnetic at 300 K.
74

Plasmons in assembled metal nanostructures: radiative and nonradiative properties, near-field coupling and its universal scaling behavior

Jain, Prashant K. 10 January 2008 (has links)
Noble metal nanostructures possess unique properties including large near-field enhancement and strong light scattering and absorption due to their plasmon resonance - the collective coherent oscillation of the metal free electrons in resonance with the electromagnetic field of light. The effect of nanostructure size, shape, composition, and environment on the plasmon resonance frequency and plasmonic enhancement is well known. In this thesis, we describe the effect of inter-particle coupling in assembled plasmonic nanostructures on their radiative and non-radiative properties. When metal nanoparticles assemble, plasmon oscillations of neighboring particles couple, resulting in a shift in the plasmon resonance frequency. Our investigation of plasmon coupling in gold nanorods shows that the coupling between the plasmons is "bonding" in nature when the plasmon oscillations are polarized along the inter-particle axis, whereas an "anti-bonding" interaction results when the polarization is perpendicular. We studied the distance-dependence of plasmon coupling using electrodynamic simulations and experimental plasmon resonances of lithographically fabricated gold nanoparticle pairs with systematically varying inter-particle separations. The strength of plasmon bonding, reflected by the fractional plasmon shift, decays near-exponentially with the inter-particle separation (in units of particle size) according to a universal trend independent of the nanoparticle size, shape, metal type, or medium. From the universal scaling model, we obtain a "plasmon ruler equation" which calculates (in good agreement with the experiments of Alivisatos and Liphardt) the inter-particle separation in a gold nanosphere pair from its plasmon resonance shift, making it applicable to the determination of inter-site distances in biological systems. Universal size-scaling is valid also in the metal nanoshell structure, a nanosphere trimer, and pairs of elongated nanoparticles, thus making it a generalized fundamental model, which is useful in optimizing plasmon coupling for achieving tunable plasmon resonances, enhanced plasmonic sensitivities, and large SERS cross-sections. Ultrafast laser pump-probe studies of non-radiative electronic relaxation in coupled metal nanospheres in aggregates and in gold nanospheres conjugated to thiol SAMs are also reported. We also show that the relative contribution of scattering (radiative) to absorption (non-radiative) part of the plasmon relaxation, respectively useful in optical and photothermal applications, can be increased by increasing the nanostructure size.
75

Squeezing light in nanoparticle-film plasmonic metasurface : from nanometric to atomically thin spacer / Confinement de la lumière dans des métasurfaces plasmoniques nanoparticule-film : d'une couche séparatrice d'épaisseur nanométrique à atomique

Nicolas, Rana 20 October 2015 (has links)
Les plasmons polaritons de surface (SPP) et les plasmons localisés de surface (LSP) font l’objet de nombreuses investigations du fait de leur fort potentiel technologique. Récemment, une attention particulière a été portée à des systèmes supportant ces deux types de résonances en déposant des nanoparticules (NPs) métalliques sur des films minces métalliques. Plusieurs études ont mis en évidence le couplage et l’hybridation entre modes localisés et délocalisés. Cependant, une compréhension en profondeur des propriétés optiques et du potentiel de ces interfaces est toujours manquante. Nous avons mené ici une étude de systèmes NPs/film couplés. Nous avons étudié à la fois expérimentalement et théoriquement l’influence d’une couche séparatrice ultra-mince en SiO2 ainsi que l’évolution des différents modes plasmoniques pour différentes épaisseurs. Nous avons ainsi mis en lumière que de tels systèmes couplés offrent des propriétés optiques exaltées et une large accordabilité spectrale. Nous avons aussi cherché à diminuer l’épaisseur de la couche séparatrice vers le cas ultime monoatomique en utilisant le graphène. Du fait du caractère non-diélectrique de celui-ci, nous avons mis en évidence un comportement optique inattendu de la résonance plasmonique. Nous avons expliqué celui-ci par la mise en évidence du dopage du graphène par les NPs, ce qui est un premier pas en direction de dispositifs optoélectroniques à base de graphène. Enfin, après avoir amélioré notre compréhension théorique de ces systèmes, nous avons évalué leur potentiel comme capteurs SERS ou LSP / Surface plasmon polariton (SPP) and Localized surface plasmon (LSP) have attracted numerous researchers due to their high technological potential. Recently, strong attention was paid to the potential of SPP and LSP combinations by investigating metallic nanoparticles (NPs) on top of metallic thin films. Several studies on such systems have shown the coupling and hybridization between localized and delocalized modes. In this work, we propose a full systematic study on coupled NP/film systems with Au NPs and Au films. We investigate both experimentally and theoretically the influence of an ultra-thin SiO2 dielectric spacer layer, as well as the evolution of the plasmonic modes as the spacer thickness increases. We show that coupled systems exhibit enhanced optical properties and larger tunability compared to uncoupled systems. We also compare these results with those measured for coupled interfaces using graphene as a non-dielectric sub-nanometer spacer. Introducing graphene adds complexity to the system. We show that such coupled systems also exhibit enhanced optical properties and larger tunability of their spectral properties compared to uncoupled systems as well as unexpected optical behavior. We explain this behavior by evidencing graphene doping by metallic NPs, which can be a first step towards graphene based optoelectronic devices. After establishing a deep understanding of coupled systems we perform both SERS and RI sensing measurements to validate the high potential of these plasmonic interfaces
76

Towards integrated optics at the nanoscale : plasmon-emitter coupling using plasmonic structures / Vers l'optique intégrée à l'échelle nanométrique : couplage plasmon-émetteur dans des structures plasmoniques

Rahbany, Nancy 25 March 2016 (has links)
L'objectif de ce travail de thèse est d'étudier le couplage plasmon-émetteur dans des structures plasmoniques hybrides, visant à renforcer l’interaction lumière-matière à l'échelle nanométrique. Contrairement aux cavités optiques dont le volume de modes est limité par la diffraction, les cavités plasmoniques offrent un unique avantage d’efficacité du confinement sub-longueur d'onde. Cela peut conduire à l’accroissement de la fluorescence des émetteurs placés dans leur voisinage. Pour cela, nous proposons comme dispositif de focalisation une structure intégrée d’un réseau annulaire avec des nanoantennes afin de garantir une meilleure efficacité. Ce dispositif bénéficie du couplage entre des plasmons polaritons de surface (SPP) qui se propagent à partir du réseau et des plasmons localisés de surface (LSP) localisés aux niveaux des nanoantennes afin de parvenir à une augmentation de champ plus élevée. Nous présentons une étude de caractérisation de la plate-forme plasmonique constitué du réseau de diffraction métallique annulaire, d’une nanoantenne en étoile, et la structure intégrée réseau/nanoantenne. Nous montrons comment cette structure peut conduire à une plus grande émission des molécules de colorants ainsi que de centre SiV du diamant. La combinaison du confinement sub-longueur d'onde des LSP et l'énergie élevé des SPP dans notre structure conduit à une focalisation précise qui peut être mis en œuvre pour étudier le couplage plasmon-émetteur dans les régimes de couplage faibles et forts / There is a growing interest nowadays in the study of strong light-matter interaction at the nanoscale, specifically between plasmons and emitters. Researchers in the fields of plasmonics, nanooptics and nanophotonics are constantly exploring new ways to control and enhance surface plasmon launching, propagation, and localization. Moreover, emitters placed in the vicinity of metallic nanoantennas exhibit a fluorescence rate enhancement due to the increase in the electromagnetic field confinement. However, numerous applications such as optical electronics, nanofabrication and sensing devices require a very high optical resolution which is limited by the diffraction limit. Targeting this problem, we introduce a novel plasmonic structure consisting of nanoantennas integrated in the center of ring diffraction gratings. Propagating surface plasmon polaritons (SPPs) are generated by the ring grating and couple with localized surface plasmons (LSPs) at the nanoantennas exciting emitters placed in the gap. We provide a thorough characterization of the optical properties of the simple ring grating structure, the double bowtie nanoantenna, and the integrated ring grating/nanoantenna structure, and study the coupling with an ensemble of molecules as well as single SiV centers in diamond. The combination of the sub-wavelength confinement of LSPs and the high energy of SPPs in our structure leads to precise nanofocusing at the nanoscale, which can be implemented to study plasmon-emitter coupling in the weak and strong coupling regimes
77

Light propagation in integrated chains of metallic nanowires : towards a nano-sensing device / Propagation de la lumière dans des chaînes de nanofils métalliques intégrées : vers un nano-capteur

Tellez Limon, Ricardo 11 December 2014 (has links)
Les systèmes optiques intégrés ont été largement utilisés dans la détection et la caractérisation de substances biochimiques. Aussi, le développement de nouvelles technologies permettant la fabrication de structures intégrées à l’échelle nanométrique, ouvre un horizon dans la conception d'une nouvelle génération de capteurs biochimiques. Sur la base de plasmons de surface localisés, au cours des dernières années ont été proposés différentes configurations de systèmes optiques pour concentrer le champ électromagnétique dans une petite région de l'espace, ce qui favorise son interaction avec des substances biochimiques. En utilisant la méthode modale de Fourier, dans la présent thèse est présentée une analyse exhaustive de la propagation des modes dans un réseau périodique de nanoparticules métalliques intégrés avec une guide d'ondes diélectrique. Deux géométries des nanoparticules ont été étudiées: des réseaux périodiques de nanofils et de nanocônes métalliques. Il est démontré que pour les nanocônes métalliques le champ optique est fortement exalté au sommet des nanocônes quand ils sont excités à leur résonance LSP via une guide d'onde diélectrique. Pour valider les résultats numériques, on a fabriqué et caractérisé expérimentalement un réseau périodique de nanofils d’or placée sur une guide d’onde à échange d’ions. La caractérisation de l'échantillon a été réalisée dans le champ lointain en mesurant des spectres de transmission et dans le champ proche en utilisant la microscopie en champ proche optique de balayage (NSOM). Les résultats obtenus montrent que les dispositifs intégrés plasmoniques proposées peuvent être appliquées dans la détection de substances biochimiques / Localized surface plasmons (LSP) are used to control and concentrate the electromagnetic field in small volumes of matter. This is a very interesting property in the context of biophotonics. Indeed, it allows an enhancement of the light-matter interaction at the cell scale, or even at a single molecule scale. The technological challenge is to propose optical devices able to efficiently couple light into localized plasmonic modes and to improve the detection of signals resulting from the interaction between the confined light and the analyte under detection.In this thesis work, we theoretically and experimentally study the guiding and confinement properties of light in periodic arrays of metallic nanowires of rectangular and triangular (nanocones) cross section that support localized plasmons. These nanowires are integrated in a photonic circuit that enables an efficient light coupling. The extinction spectra of the plasmonic resonances are directly obtained by analyzing the transmitted light in the device. By making use of the Fourier modal method, we perform an exhaustive theoretical study of the plasmonic Bloch modes that propagate due to the near-field coupling of the localized plasmons resonances. It is demonstrated that for the metallic nanocones, the optical field can be strongly enhanced by a controllable tip effect and remarkably intense
78

Micro SERS sensors based on photonic-plasmonic circuits and metallic nanoparticles / Micro-capteurs SERS basés sur les circuits photoniques-plasmoniques et les nanoparticules métalliques

Tang, Feng 15 September 2017 (has links)
La spectroscopie Raman exaltée de surface (SERS) est largement utilisée comme un outil non-intrusif et sans marquage pour identifier les empreintes spectrales moléculaires dans des applications comme la pharmacologie, la salubrité des aliments, etc. Cette thèse présente un micro-capteur SERS basé sur un guide d'ondes hybride constitué de fentes métalliques (Au/Al) et de rubans diélectriques (Si3N4) et sur une méthode pour promouvoir la capacité de détection SERS en plaçant des nanoparticules métalliques dans la fente du capteur. L'étude théorique du capteur est principalement menée par la méthode des différences finies dans le domaine temps en trois dimensions (3D-FDTD) qui fournit la réponse électromagnétique à large bande des nanostructures métalliques. Les facteurs d'exaltation du capteur sont estimés par l’approximation |E|4. Les expériences sont basées principalement sur la fabrication de fentes métalliques, qui est réalisée par la lithographie à faisceau d'électrons (EBL), et sur la caractérisation de la capacité de détection SERS des capteurs. Les résultats montrent que les signaux Raman donnés par les capteurs SERS sont détectables. Les nanoparticules métalliques, qui sont situées dans le capteur, peuvent améliorer considérablement la capacité de détection SERS. En combinant le capteur SERS avec les éléments photoniques et électroniques, un système de détection SERS entièrement intégré sur une puce peut être développé dans un proche avenir pour des détections SERS portables et stables / Surface-enhanced Raman spectroscopy (SERS) is widely used as a non-intrusive and label-free tool to identify the molecular spectral fingerprints in pharmacology, biology, etc. This thesis presents a SERS sensor based on the hybrid waveguide made of metallic (Au/Al) slots and dielectric (Si3N4) strips and a method to improve the SERS-detection capacity by placing metallic nanoparticles into the sensor’s slot. The theoretical investigation of the sensor is mainly conducted by the 3D finite-difference time-domain method (3D-FDTD) which provides the broadband electromagnetic response of metallic nanostructures. The enhancement factors in the sensor’s slot are estimated based on the |E|4-approximation. The experiments are mainly the fabrication of metallic slots, which is conducted by the electron beam lithography (EBL), and the characterization of the SERS-detection capacity of the sensors. The results show that the Raman signals given out by the SERS sensors are detectable. Metallic nanoparticles, which are located in the sensor’s slot, can improve dramatically the SERS-detection capacity. By combining the SERS sensor with the extended photonic and electronic elements, a fully integrated-on-chip SERS detection system on a chip can be developed in the near future for portable and stable SERS detections
79

Integration of a single photon source on a planar dielectric waveguide / Intégration d'une source à photon unique dans un guide plan diélectrique

Beltran Madrigal, Josslyn 14 March 2017 (has links)
Le développement de dispositifs optiques intégrés dans des domaines tels que l'information quantique et la détection de molécules est actuellement dirigé vers l'intégration de nanosources (NS) sur des systèmes sur puce avec faible pertes de propagation. Cette thèse montre une contribution à la conception, à la fabrication et à la caractérisation de structures photonique-plasmoniques en vue de l'intégration d'une seule NS sur des puces optiques à travers le spectre visible. Nous recherchons à optimiser l’efficacité d’excitation et de collection de l'émission de la fluorescence d'une NS en combinant un nano-prisme en or et une structure formée par une couche de dioxyde de titane (TiO2) et un guide d'ondes à échange d'ions (IEW) sur verre. Le couplage entre les modes permet un transfert efficace de l'énergie entre un mode faiblement confiné dans l'IEW vers un mode plasmonique confiné dans un volume effectif de quelques nanomètres cubes. Ce mode confiné interagit avec une NS en améliorant son émission de fluorescence par l'effet de facteur Purcell. En utilisant le théorème de réciprocité de l'électromagnétisme, nous avons étudié le cas réciproque où la lumière émise par la NS peut être collectée dans les modes photoniques du IEW.La caractérisation a été réalisée en champ lointain et en champ proche avec en particulier l'utilisation d'un microscope optique de champ proche à sonde diffusante (SNOM). Nous avons proposé une configuration SNOM qui permet d'imiter l'interaction d'une NS et des systèmes guidés, cartographiant la densité locale des modes guidés (LDOM) / The development of integrated optical devices in areas such as quantum information and molecular sensing is currently directed towards the integration of nanosources (NS) into systems on a chip with low propagation losses. This thesis shows a contribution on the design, fabrication, and characterization of photonic-plasmonic structures towards the integration of a NS on optical chips across the visible spectrum. We pursue the efficient excitation and collection of the fluorescence emission of a NS by making use of the interaction between an electromagnetic field concentrator (gold nanoprism) and an integrated optics structure formed by a high-index layer of titanium dioxide (TiO2) and a low-contrast index ion exchanged waveguide on glass (IEW). The coupling mode allows an efficient transfer of the energy between a weakly confined mode in the IEW and a plasmonic mode confined in an effective volume of few cubic nanometers. This confined mode interacts with a NS enhancing its florescence emission through Purcell factor effect. Using the reciprocity theorem of electromagnetism, we studied the reciprocal case where the light emitted by the NS can be collected into the photonic modes of the IEW.The characterization was performed in the far and in the near field with the use of a scanning near-field optical microscopy (SNOM). We proposed a SNOM configuration that allows us to imitate the interaction of a NS and guided systems, mapping the local density of guided modes (LDOM)
80

Interaction of Plasmons and Excitons for Low-Dimension Semiconductors

Lin, Jie (physicist) 12 1900 (has links)
The effects of surface plasmon for InGaN/GaN multi-quantum wells and ZnO nanoparticles optical linear and nonlinear emission efficiency had been experimentally studied. Due to the critical design for InGaN MQWs with inverted hexagonal pits based on GaN, both contribution of surface plasmon effect and image charge effect at resonant and off resonant frequencies were experimentally and theoretically investigated. With off- resonant condition, the InGaN MQWs emission significantly enhanced by metal nanoparticles. This enhancement was caused by the image charge effect, due to the accumulation of carriers to NPs region. When InGaN emission resonated with metal particles SP modes, surface Plasmon effect dominated the emission process. We also studied the surface plasmon effect for ZnO nanoparticles nonlinear optical processes, SHG and TPE. Defect level emission had more contribution at high incident intensity. Emissions are different for pumping deep into the bulk and near surface. A new assumption to increase the TPE efficiency was studied. We thought by using Au nanorods localized surface plasmon mode to couple the ZnO virtual state, the virtual state’s life time would be longer and experimentally lead the emission enhancement. We studied the TPE phenomena at high and near band gap energy. Both emission intensity and decay time results support our assumption. Theoretically, the carriers dynamic mechanism need further studies.

Page generated in 0.0643 seconds