Spelling suggestions: "subject:"1plastic composites"" "subject:"2plastic composites""
1 |
The effects of stress and thermal spiking on the hygrothermal response of carbon fibre reinforced plasticsStansfield, Kim Emerson January 1989 (has links)
No description available.
|
2 |
Processing and evaluation of filled thermoplasticsPitteri, Silvio January 1989 (has links)
No description available.
|
3 |
The Study of Electromagnetic Shielding for Transceiver ModuleDai, Shwa-Gha 21 June 2002 (has links)
Abstract
The Nylon and liquid crystal polymer(LCP) filled with conductive carbon fiber applied to 155Mbps and 1.25Gbps transceiver modules for electromagnetic(EM) shielding were studied.
The measured results showed that the shielding effectiveness(SE) of 155Mbps and 1.25Gbps transceiver module were 13dB and 20dB to conform to FCC class B standard, respectively. This indicates that the plastic housing filled with conductive carbon fiber is suitable for EM shielding in plastic laser transceiver module applications.
|
4 |
Influence de la modification chimique de l’interface sur la dispersion des renforts lignocellulosiques dans les Green Wood Plastic Composites (GWPC) : apport de la modélisation sur l’optimisation des propriétés mécaniques / Influence of the chemical modification of the interface on the dispersion of lignocellulosic reinforcements in Green Wood Plastic Composites GWPC : numerical model contribution on the optimization of the mechanical propertiesRodi, Erica 13 December 2017 (has links)
Cette étude se concentre sur les « Green Wood Plastic Composites » (GWPC) élaborés avec des matrices de type polyesters aliphatiques biodégradables tels que le poly(-caprolactone) PCL, le poly(acide lactique) PLA et le poly(3-hydroxybutyrate-co-3-hydroxyvalérate) PHBHV renforcées par des fibres de Miscanthus giganteus. Afin d’améliorer l‘adhésion entre les fibres végétales et les matrices thermoplastiques, une modification chimique des fibres a été mise au point. Il s’agit de greffer des chaînes de polyesters, de même nature que la matrice, à la surface des fibres végétales, en utilisant la réactivité des doubles liaisons de la lignine par des réactions de type thiol-ène. Comme ces doubles liaisons sont peu nombreuses un agent polyfonctionnel, un polythiol, a été utilisé. Ce type de greffage a permis d’obtenir une réelle augmentation des propriétés mécaniques des composites à base de PCL et de PHBHV. Différentes techniques de mise en œuvre, extrusion, mélangeage, compression et extrusion réactive ont été utilisés afin d’étudier leur influence sur les comportements mécaniques des biocomposites. L'effet de la teneur en fibres, de leur taille et de leur disposition dans la matrice ont été étudiés. Différents modèles analytiques et numériques ont été mis en œuvre pour déterminer le comportement mécanique effectif des biocomposites. Cette étude suggère que le modèle de Mori-Tanaka avec des fibres sous forme d'inclusions cylindriques constitue une bonne approximation du comportement mécanique réel des matériaux. L'utilisation de modèles à éléments finis (FE) a révélé que la transmission de la contrainte appliquée est plus efficace dans le cas de composites à fibres courtes et que les modèles 3D sont plus réalistes que les 2D correspondants. Les modèles mathématiques mis en œuvre et concernant le processus d'extrusion réactive, responsable du greffage du polymère mais également de sa réticulation semblent pouvoir estimer la fraction de la matrice réticulée. Les composites à base de PLA présentent un module d’Young comparable aux composites réalisés avec le poly(propylène) et une bonne résistance dans des conditions de vieillissement peu agressives. L'interdisciplinarité de ce travail basé sur l'association systématique des modèles numériques à la réalisation des biocomposites est une approche complète pour cerner les propriétés de ces matériaux / This study focuses on the Green Wood Plastic Composites (GWPC), manufactured using biodegradable aliphatic polyesters as matrixes, like poly(ε-caprolactone) (PCL), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) and poly(lactic acid) (PLA) reinforced with Miscanthus giganteus fibers. In order to improve the adhesion between the thermoplastic matrixes and the vegetal fibers, a chemical treatment of these last was developed. The grafting of polyesters chains of the same nature as the matrix, was carried out on the surface of vegetal fibers, using the reactivity of unsaturated bonds present in the lignin structure through the use of the thiol-ene reaction. As these double bonds are few a polyfunctional agent, a polythiol, was used. This type of grafting allowed to obtain a real increase in the mechanical properties of biocomposites realized with PCL and PHBHV. Various manufacturing techniques such as extrusion, mixing, injection, compression molding and reactive extrusion were used to study their influence on the mechanical behavior of biocomposites. The effect of fibers content, sizes and arrangement in the matrix were also studied. Different analytical and numerical models were implemented to determine the effective mechanical behavior of the biocomposites. This study suggests that a Mori-Tanaka model with fibers as cylindrical inclusions constitutes a good approximation of the real mechanical behavior of the biocomposites. The use of finite element (FE) models revealed that the transmission of the applied stress is more efficient in the case of composites with short fibers and that 3D FE models are more realistic than their corresponding 2D. Mathematical models here implemented concerning the reactive extrusion process, this last being responsible not only of the polymer grafting but also of the polymer cross-linking, seem to be able to estimate the fraction of cross-linked matrix. PLA-based composites exhibit a Young Modulus comparable to their equivalent realized with poly(propylene), showing also a good resistance to mild aging conditions. The interdisciplinarity of this work based on the systematic association of numerical models to the practical realization of the biocomposites constitutes a complete approach to determine the properties of these materials
|
5 |
Evaluation of particle and fibre degradation during processing of wood plastic composites (WPC) using dynamic image analysisTeuber, Laura 22 June 2016 (has links)
Die vorliegende Arbeit wurde im Rahmen des DFG Graduiertenkollegs 1703 „Ressourceneffizienz in Unternehmensnetzwerken – Methoden zur betrieblichen und überbetrieblichen Planung für die Nutzung erneuerbarer Rohstoffe“ durchgeführt. Es wurde der Einfluss verschiedener Prozessparameter auf die Morphologie der Holzkomponente von Holz-Kunststoff-Kompositen (Wood Plastic Composites – WPC) untersucht. Die Ergebnisse wurden bereits anderswo publiziert bzw. zur Publikation eingereicht (insgesamt vier Publikationen) und werden innerhalb individueller Kapitel der vorliegenden Arbeit wiedergegeben.
WPC vereinen die Eigenschaften von Holz als Füllstoff mit den Eigenschaften von Polymeren als Matrixmaterial. Aktuelle Literatur und Forschungsarbeiten wurden gesichtet, um Möglichkeiten zu identifizieren, wie WPC zu einer effizienten Ressourcennutzung beitragen kann. Die Ergebnisse zeigen, dass eine Vielzahl von Abfall- und Nebenprodukten aus Holz- und Agrarwirtschaft zur Herstellung von WPC verwendet werden kann, z.B. Sägespäne, Reststoffe aus der Plattenproduktion und Schlämme aus der Faserstoffproduktion. Darüber hinaus können auch Kunststoff-Rezyklate und Biokunststoffe als Rohstoff dienen.
Für die Eigenschaften von WPC spielt die Morphologie der Holzkomponente – Fasern oder Partikel – eine entscheidende Rolle. Während der Verarbeitung von WPC treten hohe Temperaturen und Scherkräfte auf, welche zur Zerkleinerung der Holzkomponente führen. Um die Zerkleinerung während der Verarbeitung analysieren zu können, wurde die Eignung der Partikel¬charakterisierung mittels dynamischer Bildanalyse zur Größenbestimmung von WPC-Füllstoffen geprüft. Dafür wurden Holzpartikel aus der Polymermatrix gelöst und ihre Morphologie vor und nach der Verarbeitung verglichen. Es zeigte sich, dass eine Auswertung bezüglich der längenbasierten Größenverteilung am besten geeignet ist, um Prozess-Effekte zu analysieren, da Partikel an beiden Enden der Größenverteilung gut abgebildet werden.
Die Effekte von Prozessparametern wie Holzanteil, Beschickungsmethode, Vorwärmen des Holzes, Polymerviskosität, Rotor-/Schneckendrehzahl, Förderrate und Schneckenkonfiguration auf die Holzzerkleinerung wurden untersucht. Dazu wurden Fichtenholz-Partikel (Picea abies) entweder unter Verwendung eines Innenmischers oder eines Doppelschnecken-Extruders mit Polypropylen (PP) compoundiert. Zur Bestimmung des Einflusses der Polymerviskosität wurden verschiedene Sorten PP und schwachverzweigtes Polyethylen (HDPE) verwendet, welche sich in ihrem Schmelzflussindex (melt flow rate – MFR) unterscheiden.
Nach dem Compoundieren betrug die Partikelgröße nur noch < 3 % der ursprünglichen Größe. Bei den PP-Kompositen nahm die Partikelzerkleinerung sowohl im Innenmischer als auch im Extruder mit zunehmendem Holzanteil zu. Auch eine zunehmende Anzahl an Knetelementen im Schneckenprofil führte zu einer stärkeren Partikelzerstörung. Bei den HDPE-Kompositen war der Einfluss des Holzanteils nur gering. Wurden die Holzpartikel und das Polymer dem Prozess gleichzeitig zugeführt, war die Partikelzerstörung intensiver als wenn die Partikel dem bereits geschmolzenen Polymer zugegeben wurden. Auch ein Vorwärmen der Partikel führte zu einer stärkeren Zerkleinerung. Die Zerkleinerung konnte unter Verwendung eines Matrixpolymers mit hohem MFR reduziert werden. Zum einen variierte der Einfluss der Förderrate mit der Schneckendrehzahl, zum anderen variierte der Einfluss von Förderrate und Schneckendrehzahl auch mit dem Holzanteil.
Da die Bedingungen des Compoundierprozesses im Labormaßstab üblicherweise nicht mit Bedingungen im Industriemaßstab vergleichbar sind, wurden die Prozessparameter an einem Labor-Extruder so gewählt, dass sie industrielle Bedingungen imitieren. Die Einkürzung von Kiefernholzfasern (Pinus radiata) wurde mit der Einkürzung von Glasfasern verglichen, da diese ein Standardmaterial in der industriellen Kompositfertigung darstellen. Mittels sogenannter „Dead-stop“-Versuche und Probennahme entlang der Extruderschnecken wurde der Einfluss von Schneckenkonfiguration, Schneckendrehzahl und Förderrate analysiert. Prozesseinstellungen, die einen geringeren Anteil an spezifischer mechanischer Energie ins Material eintrugen, sowie eine schonende Schneckenkonfiguration verzögerten die Fasereinkürzung entlang der Extruderschnecken. Für eingangs längere Glasfasern war dieser Effekt ausgeprägter als für eingangs kürzere Holzfasern. Die Faserlänge im Endprodukt zeigte jedoch keine Unterschiede bezüglich der Prozesseinstellungen. Glasfasern zeigten deutlichere Unterschiede in der Faserlänge aufgrund der Schneckenkonfiguration als Holzfasern. Diese spiegelten sich auch in den mechanischen Eigenschaften wieder: ein aggressiveres Schneckenprofil resultierte in geringeren Festigkeiten bei den Glasfaser-Kompositen, jedoch nicht bei den Holzfaser-Kompositen.
|
6 |
Characteristics of wood plastic composites based on modified wood : Moisture properties, biological performance and micromorphologySegerholm, Kristoffer January 2012 (has links)
Biobased materials made from renewable resources, such as wood, play an important role in the sustainable development of society. One main challenge of biobased building materials is their inherent moisture sensitivity, a major cause for fungal decay, mold growth and dimensional instability, resulting in decreased service life as well as costly maintenance. A new building material known as wood-plastic composites (WPCs) has emerged. WPCs are a combination of a thermoplastic matrix and a wood component, the former is usually recycled polyethylene or polypropylene, and the latter a wood processing residual, e.g. sawdust and wood shavings. The objective of this thesis was to gain more insight about characteristics of WPCs containing a modified wood component. The hypothesis was that a modified wood component in WPCs would increase the moisture resistance and durability in outdoor applications. The study comprises both injection molded and extruded WPC samples made with an unmodified, acetylated, thermally modified or furfurylated wood component in a polypropylene (PP), high density polyethylene (HDPE), cellulose ester (CAP, a cellulose ester containing both acetate and propionate substituents) or polylactate (PLA) matrix. The WPCs were prepared with 50-70 weight-% wood. The emphasis was on studying the moisture sorption, fungal resistance and micromorphological features of these new types of composites. Water sorption in both liquid and vapor phases was studied, and the biological performance was studied both in laboratory and in long term outdoor field tests. Micromorphological features were assessed by analyzing of the wood component prior to and after processing, and by studying the composite microstructure by means of a new sample preparation technique based on UV excimer laser ablation combined with scanning electron microscopy (SEM). Results showed that the WPCs with a modified wood component had a distinctly lower hygroscopicity than the WPCs with unmodified wood, which resulted in less wood-plastic interfacial cracks when subjected to a moisture soaking-drying cycle. Durability assessments in field and marine tests showed that WPCs with PP or CAP as a matrix and 70 weight-% unmodified wood degraded severely within a few years, whereas the corresponding WPCs with a modified wood component were sound after 7 years in field tests and 6 years in marine tests. Accelerated durability tests of WPCs with PLA as a matrix showed only low mass losses due to decay. However, strength losses due to moisture sorption suggest that the compatibility between the PLA and the different wood components must be improved. The micromorphological studies showed that WPC processing distinctly reduces the size and changes the shape of the wood component. The change was most pronounced in the thermally modified wood component which became significantly reduced in size. The disintegration of the modified wood components during processing also creates a more homogeneous micromorphology of the WPCs, which may be beneficial from a mechanical performance perspective. Future studies are suggested to include analyses of the surface composition, the surface energy and the surface energy heterogeneity of both wood and polymer components in order to tailor new compatible wood-polymer combinations in WPCs and biocomposites. / <p>QC 20121119</p>
|
7 |
Investigating Mechanical Performance and Water Absorption Behavior of Organo-nanoclay Modified Biofiber Plastic CompositesChen, Jieming 02 August 2013 (has links)
Hydrophobic Surface modification of biofibers to reduce water/moisture absorption of the biofiber or biofiber-plastic composites has attracted many researchers. In order to reduce the moisture sensitivity of kraft and mechanical pulp fibers, organo-nanoclay particles were adsorbed on the biofiber surfaces. Surface hydrophobicity, in terms of moisture absorption, water uptake, water contact angle and surface energy of the modified fibers were tested. The treated fibers had nano-scale surface roughness and substantially lower surface energy. The thermal stability of the mechanical pulp fibers increased after the nanoclay modification.
The organo-nanoclay treated kraft and mechanical pulp fibers were used to make biofiber reinforced high density polyethylene (HDPE) composites. The organo-nanoclay treated kraft fibers had a more uniform dispersion in the HDPE matrix and the resulting composites had a higher Young’s modulus and thermal stability. Similar trend was observed for the mechanical pulp fiber-HDPE composites. The adhesion between the kraft fibers and matrix was greatly improved after adding maleic anhydride polyethylene (MAPE) as a compatibilizer, therefore, improvements in tensile strength, Young’s modulus, and thermal stability of both treated and untreated fiber composites were observed. However, this improvement was more significant for the composites containing the treated fibers. In addition, water absorption was decreased by incorporating the organo-nanoclay treated mechanical pulp fibers in the HDPE composites. The treated kraft fiber-HDPE-MAPE composites also showed a decrease in water absorption.
The crystallization behaviors of the organo-nanoclay treated and untreated kraft fiber-HDPE composites with and without MAPE compatibilizer were studied. It was found by differential scanning calorimetry (DSC) analysis that both organo-nanoclay treated and untreated kraft fibers could act as nucleating agents. All composites crystallized much faster than the neat HDPE, while their crystallinity levels were lower. The organo-nanoclay treatment of the kraft fibers increased the nucleation rate. However, both the crystallinity level and the nucleation rate of the treated kraft fiber composites were increased by the addition of the MAPE compatibilizer. X-ray diffraction (XRD) analysis reveled that MAPE could also increase the d-spacing of the organo-nanoclay layers in the composites. When the fiber loading was 40 wt% in the composites, exfoliation of the nanoclays in the composites was observed.
|
8 |
Investigating Mechanical Performance and Water Absorption Behavior of Organo-nanoclay Modified Biofiber Plastic CompositesChen, Jieming 02 August 2013 (has links)
Hydrophobic Surface modification of biofibers to reduce water/moisture absorption of the biofiber or biofiber-plastic composites has attracted many researchers. In order to reduce the moisture sensitivity of kraft and mechanical pulp fibers, organo-nanoclay particles were adsorbed on the biofiber surfaces. Surface hydrophobicity, in terms of moisture absorption, water uptake, water contact angle and surface energy of the modified fibers were tested. The treated fibers had nano-scale surface roughness and substantially lower surface energy. The thermal stability of the mechanical pulp fibers increased after the nanoclay modification.
The organo-nanoclay treated kraft and mechanical pulp fibers were used to make biofiber reinforced high density polyethylene (HDPE) composites. The organo-nanoclay treated kraft fibers had a more uniform dispersion in the HDPE matrix and the resulting composites had a higher Young’s modulus and thermal stability. Similar trend was observed for the mechanical pulp fiber-HDPE composites. The adhesion between the kraft fibers and matrix was greatly improved after adding maleic anhydride polyethylene (MAPE) as a compatibilizer, therefore, improvements in tensile strength, Young’s modulus, and thermal stability of both treated and untreated fiber composites were observed. However, this improvement was more significant for the composites containing the treated fibers. In addition, water absorption was decreased by incorporating the organo-nanoclay treated mechanical pulp fibers in the HDPE composites. The treated kraft fiber-HDPE-MAPE composites also showed a decrease in water absorption.
The crystallization behaviors of the organo-nanoclay treated and untreated kraft fiber-HDPE composites with and without MAPE compatibilizer were studied. It was found by differential scanning calorimetry (DSC) analysis that both organo-nanoclay treated and untreated kraft fibers could act as nucleating agents. All composites crystallized much faster than the neat HDPE, while their crystallinity levels were lower. The organo-nanoclay treatment of the kraft fibers increased the nucleation rate. However, both the crystallinity level and the nucleation rate of the treated kraft fiber composites were increased by the addition of the MAPE compatibilizer. X-ray diffraction (XRD) analysis reveled that MAPE could also increase the d-spacing of the organo-nanoclay layers in the composites. When the fiber loading was 40 wt% in the composites, exfoliation of the nanoclays in the composites was observed.
|
9 |
The microdistribution of urea formaldehyde resin in particleboard, and its significanceBeele, P. M. January 1983 (has links)
No description available.
|
10 |
Advancing the technology development for better quality wood plastic composites: process ability studySemeralul, Hamid Osman 01 March 2009 (has links)
Wood Plastic Composites (WPC) have advantages over natural wood such as improved
stiffness, recyclability, and waste minimization. However, issues such as the difficulty of
processing WPC with conventional methods, volatile emission from the wood and the
composites’ lack of strength must be addressed. A system for continuous extrusion of
rectangular profiles of WPC was developed and some critical processing strategies were
identified. The use of a lubricant and a calibrator also improved the profile extrusion of
WPC. In this work, glass was also added to improve WPC’s mechanical strength.
Generally, a glass content of 2.5% appears to improve the properties but further addition
does not have a significant effect. Foaming of WPC, which can enhance their properties,
was investigated through studying the effect of heating time and temperature on void
fraction and cell density. / UOIT
|
Page generated in 0.3001 seconds