• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 13
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Influence de la modification chimique de l’interface sur la dispersion des renforts lignocellulosiques dans les Green Wood Plastic Composites (GWPC) : apport de la modélisation sur l’optimisation des propriétés mécaniques / Influence of the chemical modification of the interface on the dispersion of lignocellulosic reinforcements in Green Wood Plastic Composites GWPC : numerical model contribution on the optimization of the mechanical properties

Rodi, Erica 13 December 2017 (has links)
Cette étude se concentre sur les « Green Wood Plastic Composites » (GWPC) élaborés avec des matrices de type polyesters aliphatiques biodégradables tels que le poly(-caprolactone) PCL, le poly(acide lactique) PLA et le poly(3-hydroxybutyrate-co-3-hydroxyvalérate) PHBHV renforcées par des fibres de Miscanthus giganteus. Afin d’améliorer l‘adhésion entre les fibres végétales et les matrices thermoplastiques, une modification chimique des fibres a été mise au point. Il s’agit de greffer des chaînes de polyesters, de même nature que la matrice, à la surface des fibres végétales, en utilisant la réactivité des doubles liaisons de la lignine par des réactions de type thiol-ène. Comme ces doubles liaisons sont peu nombreuses un agent polyfonctionnel, un polythiol, a été utilisé. Ce type de greffage a permis d’obtenir une réelle augmentation des propriétés mécaniques des composites à base de PCL et de PHBHV. Différentes techniques de mise en œuvre, extrusion, mélangeage, compression et extrusion réactive ont été utilisés afin d’étudier leur influence sur les comportements mécaniques des biocomposites. L'effet de la teneur en fibres, de leur taille et de leur disposition dans la matrice ont été étudiés. Différents modèles analytiques et numériques ont été mis en œuvre pour déterminer le comportement mécanique effectif des biocomposites. Cette étude suggère que le modèle de Mori-Tanaka avec des fibres sous forme d'inclusions cylindriques constitue une bonne approximation du comportement mécanique réel des matériaux. L'utilisation de modèles à éléments finis (FE) a révélé que la transmission de la contrainte appliquée est plus efficace dans le cas de composites à fibres courtes et que les modèles 3D sont plus réalistes que les 2D correspondants. Les modèles mathématiques mis en œuvre et concernant le processus d'extrusion réactive, responsable du greffage du polymère mais également de sa réticulation semblent pouvoir estimer la fraction de la matrice réticulée. Les composites à base de PLA présentent un module d’Young comparable aux composites réalisés avec le poly(propylène) et une bonne résistance dans des conditions de vieillissement peu agressives. L'interdisciplinarité de ce travail basé sur l'association systématique des modèles numériques à la réalisation des biocomposites est une approche complète pour cerner les propriétés de ces matériaux / This study focuses on the Green Wood Plastic Composites (GWPC), manufactured using biodegradable aliphatic polyesters as matrixes, like poly(ε-caprolactone) (PCL), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) and poly(lactic acid) (PLA) reinforced with Miscanthus giganteus fibers. In order to improve the adhesion between the thermoplastic matrixes and the vegetal fibers, a chemical treatment of these last was developed. The grafting of polyesters chains of the same nature as the matrix, was carried out on the surface of vegetal fibers, using the reactivity of unsaturated bonds present in the lignin structure through the use of the thiol-ene reaction. As these double bonds are few a polyfunctional agent, a polythiol, was used. This type of grafting allowed to obtain a real increase in the mechanical properties of biocomposites realized with PCL and PHBHV. Various manufacturing techniques such as extrusion, mixing, injection, compression molding and reactive extrusion were used to study their influence on the mechanical behavior of biocomposites. The effect of fibers content, sizes and arrangement in the matrix were also studied. Different analytical and numerical models were implemented to determine the effective mechanical behavior of the biocomposites. This study suggests that a Mori-Tanaka model with fibers as cylindrical inclusions constitutes a good approximation of the real mechanical behavior of the biocomposites. The use of finite element (FE) models revealed that the transmission of the applied stress is more efficient in the case of composites with short fibers and that 3D FE models are more realistic than their corresponding 2D. Mathematical models here implemented concerning the reactive extrusion process, this last being responsible not only of the polymer grafting but also of the polymer cross-linking, seem to be able to estimate the fraction of cross-linked matrix. PLA-based composites exhibit a Young Modulus comparable to their equivalent realized with poly(propylene), showing also a good resistance to mild aging conditions. The interdisciplinarity of this work based on the systematic association of numerical models to the practical realization of the biocomposites constitutes a complete approach to determine the properties of these materials
2

Evaluation of particle and fibre degradation during processing of wood plastic composites (WPC) using dynamic image analysis

Teuber, Laura 22 June 2016 (has links)
Die vorliegende Arbeit wurde im Rahmen des DFG Graduiertenkollegs 1703 „Ressourceneffizienz in Unternehmensnetzwerken – Methoden zur betrieblichen und überbetrieblichen Planung für die Nutzung erneuerbarer Rohstoffe“ durchgeführt. Es wurde der Einfluss verschiedener Prozessparameter auf die Morphologie der Holzkomponente von Holz-Kunststoff-Kompositen (Wood Plastic Composites – WPC) untersucht. Die Ergebnisse wurden bereits anderswo publiziert bzw. zur Publikation eingereicht (insgesamt vier Publikationen) und werden innerhalb individueller Kapitel der vorliegenden Arbeit wiedergegeben. WPC vereinen die Eigenschaften von Holz als Füllstoff mit den Eigenschaften von Polymeren als Matrixmaterial. Aktuelle Literatur und Forschungsarbeiten wurden gesichtet, um Möglichkeiten zu identifizieren, wie WPC zu einer effizienten Ressourcennutzung beitragen kann. Die Ergebnisse zeigen, dass eine Vielzahl von Abfall- und Nebenprodukten aus Holz- und Agrarwirtschaft zur Herstellung von WPC verwendet werden kann, z.B. Sägespäne, Reststoffe aus der Plattenproduktion und Schlämme aus der Faserstoffproduktion. Darüber hinaus können auch Kunststoff-Rezyklate und Biokunststoffe als Rohstoff dienen. Für die Eigenschaften von WPC spielt die Morphologie der Holzkomponente – Fasern oder Partikel – eine entscheidende Rolle. Während der Verarbeitung von WPC treten hohe Temperaturen und Scherkräfte auf, welche zur Zerkleinerung der Holzkomponente führen. Um die Zerkleinerung während der Verarbeitung analysieren zu können, wurde die Eignung der Partikel¬charakterisierung mittels dynamischer Bildanalyse zur Größenbestimmung von WPC-Füllstoffen geprüft. Dafür wurden Holzpartikel aus der Polymermatrix gelöst und ihre Morphologie vor und nach der Verarbeitung verglichen. Es zeigte sich, dass eine Auswertung bezüglich der längenbasierten Größenverteilung am besten geeignet ist, um Prozess-Effekte zu analysieren, da Partikel an beiden Enden der Größenverteilung gut abgebildet werden. Die Effekte von Prozessparametern wie Holzanteil, Beschickungsmethode, Vorwärmen des Holzes, Polymerviskosität, Rotor-/Schneckendrehzahl, Förderrate und Schneckenkonfiguration auf die Holzzerkleinerung wurden untersucht. Dazu wurden Fichtenholz-Partikel (Picea abies) entweder unter Verwendung eines Innenmischers oder eines Doppelschnecken-Extruders mit Polypropylen (PP) compoundiert. Zur Bestimmung des Einflusses der Polymerviskosität wurden verschiedene Sorten PP und schwachverzweigtes Polyethylen (HDPE) verwendet, welche sich in ihrem Schmelzflussindex (melt flow rate – MFR) unterscheiden. Nach dem Compoundieren betrug die Partikelgröße nur noch < 3 % der ursprünglichen Größe. Bei den PP-Kompositen nahm die Partikelzerkleinerung sowohl im Innenmischer als auch im Extruder mit zunehmendem Holzanteil zu. Auch eine zunehmende Anzahl an Knetelementen im Schneckenprofil führte zu einer stärkeren Partikelzerstörung. Bei den HDPE-Kompositen war der Einfluss des Holzanteils nur gering. Wurden die Holzpartikel und das Polymer dem Prozess gleichzeitig zugeführt, war die Partikelzerstörung intensiver als wenn die Partikel dem bereits geschmolzenen Polymer zugegeben wurden. Auch ein Vorwärmen der Partikel führte zu einer stärkeren Zerkleinerung. Die Zerkleinerung konnte unter Verwendung eines Matrixpolymers mit hohem MFR reduziert werden. Zum einen variierte der Einfluss der Förderrate mit der Schneckendrehzahl, zum anderen variierte der Einfluss von Förderrate und Schneckendrehzahl auch mit dem Holzanteil. Da die Bedingungen des Compoundierprozesses im Labormaßstab üblicherweise nicht mit Bedingungen im Industriemaßstab vergleichbar sind, wurden die Prozessparameter an einem Labor-Extruder so gewählt, dass sie industrielle Bedingungen imitieren. Die Einkürzung von Kiefernholzfasern (Pinus radiata) wurde mit der Einkürzung von Glasfasern verglichen, da diese ein Standardmaterial in der industriellen Kompositfertigung darstellen. Mittels sogenannter „Dead-stop“-Versuche und Probennahme entlang der Extruderschnecken wurde der Einfluss von Schneckenkonfiguration, Schneckendrehzahl und Förderrate analysiert. Prozesseinstellungen, die einen geringeren Anteil an spezifischer mechanischer Energie ins Material eintrugen, sowie eine schonende Schneckenkonfiguration verzögerten die Fasereinkürzung entlang der Extruderschnecken. Für eingangs längere Glasfasern war dieser Effekt ausgeprägter als für eingangs kürzere Holzfasern. Die Faserlänge im Endprodukt zeigte jedoch keine Unterschiede bezüglich der Prozesseinstellungen. Glasfasern zeigten deutlichere Unterschiede in der Faserlänge aufgrund der Schneckenkonfiguration als Holzfasern. Diese spiegelten sich auch in den mechanischen Eigenschaften wieder: ein aggressiveres Schneckenprofil resultierte in geringeren Festigkeiten bei den Glasfaser-Kompositen, jedoch nicht bei den Holzfaser-Kompositen.
3

Characteristics of wood plastic composites based on modified wood : Moisture properties, biological performance and micromorphology

Segerholm, Kristoffer January 2012 (has links)
Biobased materials made from renewable resources, such as wood, play an important role in the sustainable development of society. One main challenge of biobased building materials is their inherent moisture sensitivity, a major cause for fungal decay, mold growth and dimensional instability, resulting in decreased service life as well as costly maintenance. A new building material known as wood-plastic composites (WPCs) has emerged. WPCs are a combination of a thermoplastic matrix and a wood component, the former is usually recycled polyethylene or polypropylene, and the latter a wood processing residual, e.g. sawdust and wood shavings. The objective of this thesis was to gain more insight about characteristics of WPCs containing a modified wood component. The hypothesis was that a modified wood component in WPCs would increase the moisture resistance and durability in outdoor applications. The study comprises both injection molded and extruded WPC samples made with an unmodified, acetylated, thermally modified or furfurylated wood component in a polypropylene (PP), high density polyethylene (HDPE), cellulose ester (CAP, a cellulose ester containing both acetate and propionate substituents) or polylactate (PLA) matrix. The WPCs were prepared with 50-70 weight-% wood. The emphasis was on studying the moisture sorption, fungal resistance and micromorphological features of these new types of composites. Water sorption in both liquid and vapor phases was studied, and the biological performance was studied both in laboratory and in long term outdoor field tests. Micromorphological features were assessed by analyzing of the wood component prior to and after processing, and by studying the composite microstructure by means of a new sample preparation technique based on UV excimer laser ablation combined with scanning electron microscopy (SEM). Results showed that the WPCs with a modified wood component had a distinctly lower hygroscopicity than the WPCs with unmodified wood, which resulted in less wood-plastic interfacial cracks when subjected to a moisture soaking-drying cycle. Durability assessments in field and marine tests showed that WPCs with PP or CAP as a matrix and 70 weight-% unmodified wood degraded severely within a few years, whereas the corresponding WPCs with a modified wood component were sound after 7 years in field tests and 6 years in marine tests. Accelerated durability tests of WPCs with PLA as a matrix showed only low mass losses due to decay. However, strength losses due to moisture sorption suggest that the compatibility between the PLA and the different wood components must be improved. The micromorphological studies showed that WPC processing distinctly reduces the size and changes the shape of the wood component. The change was most pronounced in the thermally modified wood component which became significantly reduced in size. The disintegration of the modified wood components during processing also creates a more homogeneous micromorphology of the WPCs, which may be beneficial from a mechanical performance perspective. Future studies are suggested to include analyses of the surface composition, the surface energy and the surface energy heterogeneity of both wood and polymer components in order to tailor new compatible wood-polymer combinations in WPCs and biocomposites. / <p>QC 20121119</p>
4

The microdistribution of urea formaldehyde resin in particleboard, and its significance

Beele, P. M. January 1983 (has links)
No description available.
5

Advancing the technology development for better quality wood plastic composites: process ability study

Semeralul, Hamid Osman 01 March 2009 (has links)
Wood Plastic Composites (WPC) have advantages over natural wood such as improved stiffness, recyclability, and waste minimization. However, issues such as the difficulty of processing WPC with conventional methods, volatile emission from the wood and the composites’ lack of strength must be addressed. A system for continuous extrusion of rectangular profiles of WPC was developed and some critical processing strategies were identified. The use of a lubricant and a calibrator also improved the profile extrusion of WPC. In this work, glass was also added to improve WPC’s mechanical strength. Generally, a glass content of 2.5% appears to improve the properties but further addition does not have a significant effect. Foaming of WPC, which can enhance their properties, was investigated through studying the effect of heating time and temperature on void fraction and cell density. / UOIT
6

Wood Plastic Composites made from Modified Wood : Aspects on Moisture Sorption, Micromorphology and Durability

Segerholm, Kristoffer January 2007 (has links)
<p>Wood plastic composite (WPC) materials have seen a continuous market growth worldwide in the last decade. So-called extruded WPC profiles are today mainly used in outdoor applications, e.g. decking, railing and fencing. In outdoor conditions, moisture sorption in the wood component combined with temperature induced movements of the polymer matrix causes deformations of such composites. On the macroscopic scale this may lead to unacceptable warp, cup and bow of the WPC products, but on a microscopic scale, the movements will cause interfacial cracks between the particles and the matrix, resulting in little or no ability to transfer and re-distribute loads throughout the material. Moisture within the composite will also allow fungi and micro organisms to attack the wood particles.</p><p>The conceptual idea of this work is to use a chemically modified wood component in WPCs to enhance their long term performance. These chemically modified wood particles exhibit reduced susceptibility to moisture, resulting in better dimensional stability and a higher resistance to biological degradation as compared to that of unmodified wood. The objective of this thesis is to study the effects of using modified wood in WPCs on their moisture sorption behaviour, micromorphology and microbiological durability. The modification methods used were acetylation, heat treatment and furfurylation.</p><p>Equilibrium moisture content (EMC) and sorption behaviour of WPCs were determined by water vapour sorption experiments. The use of thin sections of the composites enabled EMC to be reached within a comparably short time span. The micromorphology was studied by LV-SEM (low vacuum-scanning electron microscope) using a specially designed sample preparation technique based on UV laser. The biological durability was evaluated by laboratory fungal test methods.</p><p>The moisture sorption experiments showed lower moisture levels for all the composites when modified wood particles were used. This was also reflected in the micromorphological studies where pronounced wood-plastic interfacial cracks were formed due to moisture movement in the composites with unmodified wood particles. The sample preparation technique by UV laser proved to be a powerful tool for preparing surfaces for micromorphological studies without adding mechanical defects caused by the sample preparation technique itself. Results from the durability test showed that WPCs with modified wood particles are highly resistant to decay by fungi.</p>
7

Resistência ao intemperismo natural e ataque fúngico de compósitos polímero-madeira

Catto, André Luis January 2015 (has links)
O desempenho de materiais compósitos plástico-madeira ou ―wood plastic composites‖(WPC) requerem uma avaliação eficiente de sua resistência ao envelhecimento natural ao longo do tempo e contra sua biodeterioração por micro-organismos. Neste sentido, o objetivo deste estudo foi investigar os mecanismos de degradação abiótica e biótica de compósitos termoplásticos com fibras vegetais, a fim de determinar seu comportamento, do ponto de vista da estabilidade, nas condições em que serão usados. A aplicação proposta para estes materiais é sua utilização em ambientes externos, com o propósito de substituir a madeira, em artefatos para construção civil, como portas, janelas, pisos, decks e divisórias. Além disso, a eficácia da utilização do agente de acoplamento (AC) na durabilidade dos compósitos envelhecidos foi investigada. Para a produção dos compósitos foi utilizada a proporção polímero-madeira de 70/30 m/m, sendo que a matriz polimérica foi constituída de uma blenda de polipropileno-copolímero de etileno acetato de vinila (PP-EVA) pós-consumo provenientes de tampas de garrafa, e as madeiras usadas na forma de serragem, utilizando as espécies de eucalipto e pinus. O polipropileno graftizado com anidrido maleico foi usado como AC na proporção de 3 % m/m. As misturas foram processadas por extrusão e os compósitos moldados por compressão térmica e injeção. No teste de degradação por fungos foram utilizados quatro espécies de fungos basidiomicetos, Trametes villosa, Trametes versicolor, Pycnoporus sanguineus e Fuscoporia ferrea, todos de podridão branca. Na degradação abiótica, foram avaliadas as propriedades físicas, mecânicas, térmicas, reológicas, químicas e morfológicas dos compósitos nos diferentes estágios e formas de degradação. Para a degradação biótica, foram realizados ensaios de biodegradação em solo simulado (respirometria) e inoculação com fungos (deterioração fúngica). Os resultados mostraram que as condições climáticas afetaram diretamente as características dos compósitos avaliados, causando mudanças na cor e em sua viscosidade, com o aumento do índice de fluidez dos materiais e também alterações em suas estruturas químicas, com aumento do índice de carbonila, indicando a ocorrência de foto-oxidação das amostras. Em relação aos ensaios de biodegradabilidade, houve uma pequena perda de massa nas amostras avaliadas e formação de biofilmes nas superfícies dos compósitos, verificados por microscopia eletrônica de varredura (MEV). A deterioração fúngica ocorre especialmente na superfície das amostras. O fungo Fuscoporia ferrea foi o mais efetivo na deterioração dos compósitos, com maior perda de massa e até mesmo o surgimento de estruturas de reprodução após o período de incubação, porém não penetrou na parte interna dos materiais. Por respirometria também foi verificado um aumento na geração de CO2 ao longo do período avaliado, indicando que há um início de metabolização das amostras por micro-organismos incubadas no solo, principalmente nas amostras expostas a nove meses de intemperismo natural. A presença das fibras protegeu a matriz de PP-EVA da degradação na face não exposta diretamente ao sol, o que é interessante para aplicações que visam longa vida útil, porém a utilização de aditivos para preservação contra radiação UV, oxigênio e micro-organismos se tornam necessárias para otimização e maior durabilidade destes materiais em estudos futuros. / Performance tests on "wood plastic composites" (WPC) require efficient evaluation of their resistance to natural aging over time and against its biodegradation by microorganisms. In this sense, the objective of this study was to investigate the abiotic and biotic degradation mechanisms of thermoplastic composites with vegetable fibers, in order to determine its behavior from the point of view of stability under conditions that will be used. The proposed application for these materials is their use outdoors, in order to replace the wood, in building construction, such as doors, windows, floors, decks and bulkheads. In addition, the effective use of the coupling agent (CA) in durability of aged composites was investigated. For the production of composite was used wood-polymer ratio of 70/30 w/w, wherein the polymeric matrix is comprised of a blend of polypropylene and ethylene-vinyl acetate copolymer (PP-EVA) from post-consumer caps bottle, and the woods used in the form of sawdust, using the eucalyptus and pine species. The polypropylene grafted with maleic anhydride was used as coupling agent in the proportion of 3% w/w. The mixtures were processed by extrusion and composites molded by injection and thermal compression. In fungal degradation tests were used four species of basidiomycete fungi, Trametes villosa, Trametes versicolor, Pycnoporus sanguineus and Fuscoporia ferrea, all white rot fungi. In abiotic degradation, physical, thermal, mechanical, rheological, chemical and morphological properties of composites at different stages of degradation and shapes were evaluated. For biotic degradation, biodegradation tests were performed on soil (respirometry) and inoculated with fungi (fungal deterioration). The results showed that the climatic conditions directly affect the characteristics of the evaluated composites, causing changes in color and its viscosity with increasing melt flow index of the materials and also changes in their chemical structures with increased carbonyl index of samples exposed to natural weathering, thus indicating a photo-oxidation of the samples. Regarding the degradation tests, there was a small weight loss in the evaluated samples, and growth of microorganisms on the surface of composites, evidenced by scanning electron microscopy (SEM). The fungal deterioration occurs especially on the surface. The fungus Fuscoporia ferrea was the most effective in composites deterioration, with greater weight loss and even the emergence of reproductive structures after the incubation period, but did not penetrate inside the material. By respirometry also can be seen an increase in the generation of CO2 over the months, indicating a beginning of metabolism of the samples incubated by microorganisms in the soil, especially in samples exposed to 9 months of natural weathering. The presence of fibers protected the PP-EVA matrix of degradation in the face not exposed to direct sunlight, which is interesting for applications that aim to long life, but the use of additives for preservation against UV radiation, oxygen and microorganisms become necessary for optimization and durability of these materials in future studies.
8

Resistência ao intemperismo natural e ataque fúngico de compósitos polímero-madeira

Catto, André Luis January 2015 (has links)
O desempenho de materiais compósitos plástico-madeira ou ―wood plastic composites‖(WPC) requerem uma avaliação eficiente de sua resistência ao envelhecimento natural ao longo do tempo e contra sua biodeterioração por micro-organismos. Neste sentido, o objetivo deste estudo foi investigar os mecanismos de degradação abiótica e biótica de compósitos termoplásticos com fibras vegetais, a fim de determinar seu comportamento, do ponto de vista da estabilidade, nas condições em que serão usados. A aplicação proposta para estes materiais é sua utilização em ambientes externos, com o propósito de substituir a madeira, em artefatos para construção civil, como portas, janelas, pisos, decks e divisórias. Além disso, a eficácia da utilização do agente de acoplamento (AC) na durabilidade dos compósitos envelhecidos foi investigada. Para a produção dos compósitos foi utilizada a proporção polímero-madeira de 70/30 m/m, sendo que a matriz polimérica foi constituída de uma blenda de polipropileno-copolímero de etileno acetato de vinila (PP-EVA) pós-consumo provenientes de tampas de garrafa, e as madeiras usadas na forma de serragem, utilizando as espécies de eucalipto e pinus. O polipropileno graftizado com anidrido maleico foi usado como AC na proporção de 3 % m/m. As misturas foram processadas por extrusão e os compósitos moldados por compressão térmica e injeção. No teste de degradação por fungos foram utilizados quatro espécies de fungos basidiomicetos, Trametes villosa, Trametes versicolor, Pycnoporus sanguineus e Fuscoporia ferrea, todos de podridão branca. Na degradação abiótica, foram avaliadas as propriedades físicas, mecânicas, térmicas, reológicas, químicas e morfológicas dos compósitos nos diferentes estágios e formas de degradação. Para a degradação biótica, foram realizados ensaios de biodegradação em solo simulado (respirometria) e inoculação com fungos (deterioração fúngica). Os resultados mostraram que as condições climáticas afetaram diretamente as características dos compósitos avaliados, causando mudanças na cor e em sua viscosidade, com o aumento do índice de fluidez dos materiais e também alterações em suas estruturas químicas, com aumento do índice de carbonila, indicando a ocorrência de foto-oxidação das amostras. Em relação aos ensaios de biodegradabilidade, houve uma pequena perda de massa nas amostras avaliadas e formação de biofilmes nas superfícies dos compósitos, verificados por microscopia eletrônica de varredura (MEV). A deterioração fúngica ocorre especialmente na superfície das amostras. O fungo Fuscoporia ferrea foi o mais efetivo na deterioração dos compósitos, com maior perda de massa e até mesmo o surgimento de estruturas de reprodução após o período de incubação, porém não penetrou na parte interna dos materiais. Por respirometria também foi verificado um aumento na geração de CO2 ao longo do período avaliado, indicando que há um início de metabolização das amostras por micro-organismos incubadas no solo, principalmente nas amostras expostas a nove meses de intemperismo natural. A presença das fibras protegeu a matriz de PP-EVA da degradação na face não exposta diretamente ao sol, o que é interessante para aplicações que visam longa vida útil, porém a utilização de aditivos para preservação contra radiação UV, oxigênio e micro-organismos se tornam necessárias para otimização e maior durabilidade destes materiais em estudos futuros. / Performance tests on "wood plastic composites" (WPC) require efficient evaluation of their resistance to natural aging over time and against its biodegradation by microorganisms. In this sense, the objective of this study was to investigate the abiotic and biotic degradation mechanisms of thermoplastic composites with vegetable fibers, in order to determine its behavior from the point of view of stability under conditions that will be used. The proposed application for these materials is their use outdoors, in order to replace the wood, in building construction, such as doors, windows, floors, decks and bulkheads. In addition, the effective use of the coupling agent (CA) in durability of aged composites was investigated. For the production of composite was used wood-polymer ratio of 70/30 w/w, wherein the polymeric matrix is comprised of a blend of polypropylene and ethylene-vinyl acetate copolymer (PP-EVA) from post-consumer caps bottle, and the woods used in the form of sawdust, using the eucalyptus and pine species. The polypropylene grafted with maleic anhydride was used as coupling agent in the proportion of 3% w/w. The mixtures were processed by extrusion and composites molded by injection and thermal compression. In fungal degradation tests were used four species of basidiomycete fungi, Trametes villosa, Trametes versicolor, Pycnoporus sanguineus and Fuscoporia ferrea, all white rot fungi. In abiotic degradation, physical, thermal, mechanical, rheological, chemical and morphological properties of composites at different stages of degradation and shapes were evaluated. For biotic degradation, biodegradation tests were performed on soil (respirometry) and inoculated with fungi (fungal deterioration). The results showed that the climatic conditions directly affect the characteristics of the evaluated composites, causing changes in color and its viscosity with increasing melt flow index of the materials and also changes in their chemical structures with increased carbonyl index of samples exposed to natural weathering, thus indicating a photo-oxidation of the samples. Regarding the degradation tests, there was a small weight loss in the evaluated samples, and growth of microorganisms on the surface of composites, evidenced by scanning electron microscopy (SEM). The fungal deterioration occurs especially on the surface. The fungus Fuscoporia ferrea was the most effective in composites deterioration, with greater weight loss and even the emergence of reproductive structures after the incubation period, but did not penetrate inside the material. By respirometry also can be seen an increase in the generation of CO2 over the months, indicating a beginning of metabolism of the samples incubated by microorganisms in the soil, especially in samples exposed to 9 months of natural weathering. The presence of fibers protected the PP-EVA matrix of degradation in the face not exposed to direct sunlight, which is interesting for applications that aim to long life, but the use of additives for preservation against UV radiation, oxygen and microorganisms become necessary for optimization and durability of these materials in future studies.
9

Resistência ao intemperismo natural e ataque fúngico de compósitos polímero-madeira

Catto, André Luis January 2015 (has links)
O desempenho de materiais compósitos plástico-madeira ou ―wood plastic composites‖(WPC) requerem uma avaliação eficiente de sua resistência ao envelhecimento natural ao longo do tempo e contra sua biodeterioração por micro-organismos. Neste sentido, o objetivo deste estudo foi investigar os mecanismos de degradação abiótica e biótica de compósitos termoplásticos com fibras vegetais, a fim de determinar seu comportamento, do ponto de vista da estabilidade, nas condições em que serão usados. A aplicação proposta para estes materiais é sua utilização em ambientes externos, com o propósito de substituir a madeira, em artefatos para construção civil, como portas, janelas, pisos, decks e divisórias. Além disso, a eficácia da utilização do agente de acoplamento (AC) na durabilidade dos compósitos envelhecidos foi investigada. Para a produção dos compósitos foi utilizada a proporção polímero-madeira de 70/30 m/m, sendo que a matriz polimérica foi constituída de uma blenda de polipropileno-copolímero de etileno acetato de vinila (PP-EVA) pós-consumo provenientes de tampas de garrafa, e as madeiras usadas na forma de serragem, utilizando as espécies de eucalipto e pinus. O polipropileno graftizado com anidrido maleico foi usado como AC na proporção de 3 % m/m. As misturas foram processadas por extrusão e os compósitos moldados por compressão térmica e injeção. No teste de degradação por fungos foram utilizados quatro espécies de fungos basidiomicetos, Trametes villosa, Trametes versicolor, Pycnoporus sanguineus e Fuscoporia ferrea, todos de podridão branca. Na degradação abiótica, foram avaliadas as propriedades físicas, mecânicas, térmicas, reológicas, químicas e morfológicas dos compósitos nos diferentes estágios e formas de degradação. Para a degradação biótica, foram realizados ensaios de biodegradação em solo simulado (respirometria) e inoculação com fungos (deterioração fúngica). Os resultados mostraram que as condições climáticas afetaram diretamente as características dos compósitos avaliados, causando mudanças na cor e em sua viscosidade, com o aumento do índice de fluidez dos materiais e também alterações em suas estruturas químicas, com aumento do índice de carbonila, indicando a ocorrência de foto-oxidação das amostras. Em relação aos ensaios de biodegradabilidade, houve uma pequena perda de massa nas amostras avaliadas e formação de biofilmes nas superfícies dos compósitos, verificados por microscopia eletrônica de varredura (MEV). A deterioração fúngica ocorre especialmente na superfície das amostras. O fungo Fuscoporia ferrea foi o mais efetivo na deterioração dos compósitos, com maior perda de massa e até mesmo o surgimento de estruturas de reprodução após o período de incubação, porém não penetrou na parte interna dos materiais. Por respirometria também foi verificado um aumento na geração de CO2 ao longo do período avaliado, indicando que há um início de metabolização das amostras por micro-organismos incubadas no solo, principalmente nas amostras expostas a nove meses de intemperismo natural. A presença das fibras protegeu a matriz de PP-EVA da degradação na face não exposta diretamente ao sol, o que é interessante para aplicações que visam longa vida útil, porém a utilização de aditivos para preservação contra radiação UV, oxigênio e micro-organismos se tornam necessárias para otimização e maior durabilidade destes materiais em estudos futuros. / Performance tests on "wood plastic composites" (WPC) require efficient evaluation of their resistance to natural aging over time and against its biodegradation by microorganisms. In this sense, the objective of this study was to investigate the abiotic and biotic degradation mechanisms of thermoplastic composites with vegetable fibers, in order to determine its behavior from the point of view of stability under conditions that will be used. The proposed application for these materials is their use outdoors, in order to replace the wood, in building construction, such as doors, windows, floors, decks and bulkheads. In addition, the effective use of the coupling agent (CA) in durability of aged composites was investigated. For the production of composite was used wood-polymer ratio of 70/30 w/w, wherein the polymeric matrix is comprised of a blend of polypropylene and ethylene-vinyl acetate copolymer (PP-EVA) from post-consumer caps bottle, and the woods used in the form of sawdust, using the eucalyptus and pine species. The polypropylene grafted with maleic anhydride was used as coupling agent in the proportion of 3% w/w. The mixtures were processed by extrusion and composites molded by injection and thermal compression. In fungal degradation tests were used four species of basidiomycete fungi, Trametes villosa, Trametes versicolor, Pycnoporus sanguineus and Fuscoporia ferrea, all white rot fungi. In abiotic degradation, physical, thermal, mechanical, rheological, chemical and morphological properties of composites at different stages of degradation and shapes were evaluated. For biotic degradation, biodegradation tests were performed on soil (respirometry) and inoculated with fungi (fungal deterioration). The results showed that the climatic conditions directly affect the characteristics of the evaluated composites, causing changes in color and its viscosity with increasing melt flow index of the materials and also changes in their chemical structures with increased carbonyl index of samples exposed to natural weathering, thus indicating a photo-oxidation of the samples. Regarding the degradation tests, there was a small weight loss in the evaluated samples, and growth of microorganisms on the surface of composites, evidenced by scanning electron microscopy (SEM). The fungal deterioration occurs especially on the surface. The fungus Fuscoporia ferrea was the most effective in composites deterioration, with greater weight loss and even the emergence of reproductive structures after the incubation period, but did not penetrate inside the material. By respirometry also can be seen an increase in the generation of CO2 over the months, indicating a beginning of metabolism of the samples incubated by microorganisms in the soil, especially in samples exposed to 9 months of natural weathering. The presence of fibers protected the PP-EVA matrix of degradation in the face not exposed to direct sunlight, which is interesting for applications that aim to long life, but the use of additives for preservation against UV radiation, oxygen and microorganisms become necessary for optimization and durability of these materials in future studies.
10

Verarbeitung und Optimierung der Rezeptur von Wood Plastic Composites (WPC)

Radovanovic, Itana 12 April 2007 (has links)
Wood Plastic Composites (WPC) bilden eine inzwischen beträchtlich wachsende Produktgruppe der Naturfaserverbundwerkstoffe. Diese kombinieren vorteilhafte anwendungstechnische Eigenschaften mit vergleichsweise kostengünstiger Verfügbarkeit. Derzeit sucht die europäische WPC-Industrie intensiv nach neuen Anwendungsbereichen, die für diese Werkstoffgruppe geeignet sind. Anwendungen von Spritzgießteilen aus WPC, z.B. in der Automobil- oder Möbelindustrie, könnten die jährliche Produktion enorm erhöhen. Hierfür müssten jedoch auch die Eigenschaften die hohen Erwartungskriterien erfüllen.Eine Vielzahl vorgängiger Arbeiten zeigt starke Abhängigkeit der Eigenschaften der WPC von der Art und der Morphologie der Holzfaser, der Kunststoffmatrix, dem Zuschlag von Additiven und der Folge daraus von den Verarbeitungsparameter. Das Ziel der vorliegenden Arbeit liegt in der Suche nach Zusammenhängen zwischen der systematischen Rezepturvariation, den Eigenschaften des Verbundes und der Verarbeitungsgüte beim Compoundieren und Spritzgießen von WPC. Die Fließeigenschaften werden in Abhängigkeit definierter Rezepturparameter quantitativ erfasst. Systematische Rezepturvariationen zur Wasseraufnahme und zum Einfluss von Additiv-Wachsen werden ebenfalls im Rahmen dieser Arbeit analysiert. Nicht zuletzt werde untersucht, wie verschiedene Verarbeitungstechnologien (Direktextrusion, Extrusion aus fertigen Compounds und Spritzgießen) die Eigenschaften von WPC mit vergleichbarer Zusammensetzung beeinflussen.

Page generated in 0.1305 seconds