• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bases neurales de l’apprentissage olfactif perceptif : plasticité structurale et contrôle noradrénergique / Neural basis of perceptual learning : structural plasticity and noradrenergic control

Yin, Xuming 28 September 2016 (has links)
Le champ des neurosciences connaît depuis quelques décades un développement très important dans la compréhension des corrélats neuronaux de la perception. Le cerveau adulte répond aux variations de l'environnement et à l'expérience par des modifications fonctionnelles et structurales, regroupées sous le terme générique de plasticité, plasticité qui sous-tend l'apprentissage. Cette plasticité affecte la perception sensorielle, olfactive puisque c'est cette modalité qui va nous intéresser, mais également la perception de stimuli dans d'autres modalités sensorielles. Contrairement à des convictions longtemps érigées en dogme mais maintenant dépassées sur la nature fixe du cerveau, il est établi désormais que le cerveau adulte est capable de générer tout au long de la vie de nouveaux neurones qui s'intègrent dans la circuiterie cérébrale complexe, en particulier dans le bulbe olfactif et pourraient jouer un rôle dans l'apprentissage. Des travaux antérieurs de l'équipe ont démontré que l'acquisition de l'apprentissage perceptif dépend de la présence des neurones formés chez l'adulte. Par ailleurs, les systèmes neuromodulateurs comme les systèmes noradrénergique et cholinergique innervent massivement le bulbe olfactif et en particulier les neurInhibiting noradrenergic fibers duroing post learning discrimination testing lblmocked ones cibles de la neurogenèse adulte, les interneurones granulaires. Ils sont depuis longtemps connus pour leur implication dans les processus d'apprentissage en général et olfactif en particulier. Un objectif de la thèse était de déterminer le pattern temporal et spatial de l'innervation des neurones formés chez l'adulte dans le bulbe olfactif et sa modification potentielle par l'apprentissage, par des approches comportementales combinées à des approches neuro-anatomiques. Un autre objectif était d'évaluer le rôle fonctionnel des contacts noradrénergiques mis en place par l'apprentissage en utilisant l'outil optogénétique. Les résultats indiquent que l'innervation des neurones formés chez l'adulte s'installent dès le huitième jour après la naissance des neurones pour le système cholinergique, comme pour le système noradrénergique. L'apprentissage induit une augmentation massive des contacts noradrénergiques sur les neurones formés chez l'adulte qui n'est pas retrouvée pour les fibres cholinergiques, pointant le système noradrénergique comme un acteur majeur de la plasticité induite par l'apprentissage perceptif / The field of neuroscience has experienced explosive growth over the past decade toward understanding the neural correlates of perception. More specifically, the adult brain responds to environmental experience by significant functional and structural modifications, called "neural plasticity" which underlies learning. A main issue in neuroscience is to understand the cellular basis of perceptive plasticity and subsequent behavioral adaptations. Contrary to previously held beliefs about its static nature, the adult brain is in fact capable of generating new neurons that can integrate into its complex circuitry. The birth of new neurons constitutively occurs in two specific regions of the adult mammalian brain (OB and hippocampal dentate gyrus). Adult neurogenesis is a sophisticated biological process whose function has remained a mystery to neuroscience researchers but a role in learning and memory has been proposed. Previous work in our group have shown that perceptive olfactory learning depends on adult neurogenesis. In addition, neuromodulatory systems, including noradrenergic and cholinergic systems massively innervate the olfactory bulb and more specifically the inhibitory interneurons targeted by adult neurogenesis and are long-known for their role in learning and memory. One objective of the present work was to determine the spatial and temporal pattern of the innervation by noradrenergic and cholinergic inputs of developing adult-born neurons and to investigate its modulation by learning. For that purpose, we used behavioral and neuro-anatomical approaches. Another objective was to assess the functional role of centrifugal contacts using an optogenetic approach. Results indicate that the noradrenergic innervation is selectively increased on adult born neurons following perceptual olfactory learning, a phenomenon that was not observed for cholinergic innervation, pointing the noradrenergic system as a key mechanisms involved in perceptual learning. Interestingly, noradrenergic contacts on neurons born during ontogenesis were not affected by learning, suggesting a very specific part played by adult-born neuron in learning associated plasticity. In the same brains, we have analyzed the structural plasticity induced by learning in adult-born and pre-existing neurons. The major finding is that mirroring the increased number of noradrenergic contacts, learning induced an increase in dendritic spines on adult-born, but not on pre-existing neurons
2

Etude structurale des petites protéines G : Rap2A dans un complexe non catalytique avec le GTP et Arf6 en complexe avec du GDP

Menetrey, Julie 05 December 2000 (has links) (PDF)
Les petites protéines G sont des protéines capables de fixer du GDP ou du GTP, ce qui va induire des changements de conformation au sein de la protéine qui lui permettront d'interagir avec des partenaires cellulaires distincts, et ainsi de jouer un rôle "d'interrupteur moléculaire". Le cycle GDP/GTP des petites protéines G ne fonctionne pas seul, il est régulé par un facteur d'échange GDP/GTP (GEF) et une protéine activatrice de la GTPase (GAP). Les petites protéines G sont impliquées dans des processus cellulaires fondamentaux et divers, comme la différentiation et la prolifération cellulaire, l'organisation et la dynamique du cytosquelette, et les transports intracellulaires. Un certain nombre de structures de petite protéine G sont maintenant connues, et ont permis de définir le repliement général des petites protéines G et les changements de conformation au cours du cycle GDP/GTP. Le premier projet porte sur l'étude structurale par diffraction des rayons X de la petite protéine G Rap2A, homologue de l'oncogène Ras dans un complexe non catalytique avec le GTP. Cette étude a permis de mettre en évidence la présence d'une nouvelle interaction au niveau du site nucléotidique entre la tyrosine 32 et le phosphate gamma du GTP. Et, nous avons montré que les changements de conformation de Rap2A au cours de son cycle GDP/GTP sont caractérisés par deux transitions désordre/ordre. Le second projet porte sur l'étude structurale par diffraction des rayons X de la petite protéine G Arf6 en complexe avec du GDP. Cette étude a montré que deux protéines qui possèdent une forte homologie de séquence peuvent avoir des structures assez différentes pour être distinguées. Les principaux partenaires des formes GDP des petites protéines G sont les GEF, ce qui suggère une base structurale pour la spécificité des GEF. En conclusion, nous discutons des bases structurales qui permettent aux petites protéines G d'être distinguées les unes des autres.
3

Rôle des noyaux réuniens (Re) et rhomboïde (Rh) du thalamus dans la plasticité structurale associée à la persistance d’un souvenir spatial chez le rat / Role of the reuniens and rhomboid thalamic nuclei in the structural plasticity associated with spatial memory persistence in rat

Klein, Marie-Muguet 14 December 2018 (has links)
La théorie standard de la consolidation postule que l’information est initialement encodée dans le réseau hippocampo-cortical, créant une trace mnésique au sein de l’hippocampe (HIP). Au cours du temps, la trace est transférée au cortex préfrontal médian (CPFm), et notamment au cortex cingulaire antérieur (CCA). À la suite de lésion des noyaux reuniens et rhomboide (ReRh), réciproquement connectés à l’HIP et au CPFm, le souvenir spatial se forme normalement mais ne persiste pas dans le temps. Ainsi, nous avons évalué l’impact de la lésion ReRh sur la plasticité structurale sous-tendant la persistance du souvenir spatial. Des rats lésés ReRh ont été entraînés en piscine de Morris et testés pour un rappel récent (5j) ou ancien (25j). La plasticité structurale a été évaluée par coloration de Golgi dans l’HIP et le CPFm. La lésion ReRh n'avait aucun effet sur l’apprentissage et le souvenir récent, mais a altéré celui du souvenir ancien. Dans le CA1 des rats Sham, le nombre d'épines dendritiques a été augmenté aux deux délais (5 et 25j) post-acquisition comparé au niveau basal. Après la lésion, cette augmentation n’a pas persisté entre 5 et 25j. Dans le CCA des rats Sham, le nombre d'épines dendritiques a été augmenté uniquement à 25j comparé au niveau de base, une modification non observée chez les rats lésés. Ainsi, à la lésion des noyaux ReRh perturbe la plasticité structurale sous-tendant le souvenir spatial ancien indiquant un rôle crucial de ces noyaux dans l’établissement d’un souvenir persistant. / The standard model of systemic consolidation posits that information is initially encoded in the hippocampo-neocortical network, the memory trace being first created in the sole hippocampus (HIP). Over time, the trace is progressively transferred to modules of the medial prefrontal cortex (mPFC), particularly to the anterior cingulate cortex (ACC). Following lesions of the thalamic reuniens and rhomboid nuclei (ReRh), which are reciprocally connected with both the Hipp and mPFC, a spatial memory forms normally but does not persist (Loureiro et al 2012). Therefore, we assessed the impact of ReRh lesions on structural plasticity underlying spatial memory persistence. Male Long-Evans rats subjected to NMDA lesions of the ReRh nuclei were trained in the Morris Water Maze and tested for retrieval of recent (5 days) or remote (25 days) memory. Structural plasticity was assessed on Golgi-stained material in the HIP and CPFm. ReRh lesions had no effect on learning and recent memory, but altered remote memory. In the HIP (CA1) of sham-operated rats, the spine number was increased at both 5 and 25 days post-acquisition vs baseline. After ReRh lesion, the increase did not persist from 5 to 25 days. In the mPFC (ACC) of sham-operated rats, the spine number was increased only at 25 days vs baseline, a modification not observed in ReRh lesioned rats. Thus, following lesion of ReRh nuclei, structural plasticity underlying remote spatial memory formation does not operate correctly in the mPFC and Hip, pointing to a crucial role of ReRh in memory persistence.
4

Super-resolution STED and two-photon microscopy of dendritic spine and microglial dynamics / Imagerie de la dynamique des microglies et des épines dendritiques par microscopie super-résolutive STED et bi-photonique

Pfeiffer, Thomas 21 November 2017 (has links)
Les changements des connections neuronales interviendraient dans la formation de la mémoire. J’ai développé de nouvelles approches basées sur l’imagerie photonique pour étudier (i) les interactions entre les microglies et les épines dendritiques, et (ii) le renouvellement des épines dans l’hippocampe in vivo. Ces deux phénomènes contribueraient au remodelage des circuits synaptiques intervenant dans la mémoire. (i) Les microglies sont impliquées dans de nouvelles fonctions en condition saine. J’ai examiné l’effet de la plasticité synaptique sur la dynamique morphologique des microglies, et sur leur interaction avec les épines. En combinant l’électrophysiologie et l’imagerie bi-photonique dans des tranches aigües de souris transgéniques, je démontre que la microglie intensifie son interaction physique avec les épines. Ainsi pour continuer l’étude de ces interactions et leur impact fonctionnel plus précisément, j’ai optimisé l’imagerie STED dans des tranches aigües. (ii) La plasticité structurale des épines est cruciale pour la mémoire, mais les connaissances à ce sujet dans l’hippocampe in vivo restent limitées. J’ai donc établi une technique d’imagerie chronique STED in vivo pour visualiser les épines dans l’hippocampe. Cette approche a révélé une densité double de celle reportée précédemment à l’aide de la microscopie bi-photonique. De plus j’ai observé un renouvellement des épines de 40% en 5 jours, représentant un taux important de remodelage synaptique dans l’hippocampe. Les approches d’imagerie super-résolutive permettent l’étude des interactions microglie-épine, et du renouvellement des épines hippocampiques avec une résolution inédite chez la souris vivante. / Activity-dependent changes in neuronal connectivity are thought to underlie learning and memory. I developed and applied novel high-resolution imaging-based approaches to study (i) microglia-spine interactions and (ii) the turnover of dendritic spines in the mouse hippocampus, which are both thought to contribute to the remodeling of synaptic circuits underlying memory formation. (i) Microglia have been implicated in a variety of novel tasks beyond their classic immune defensive roles. I examined the effect of synaptic plasticity on microglial morphological dynamics and interactions with spines, using a combination of electrophysiology and two-photon microscopy in acute brain slices. I demonstrated that microglia intensify their physical interactions with spines after the induction of hippocampal synaptic plasticity. To study these interactions and their functional impact in greater detail, I optimized and applied time-lapse STED imaging in acute brain slices. (ii) Spine structural plasticity is thought to underpin memory formation. Yet, we know very little about it in the hippocampus in vivo, which is the archetypical memory center of the mammalian brain. I established chronic in vivo STED imaging of hippocampal spines in the living mouse using a modified cranial window technique. The super-resolution approach revealed a spine density that was two times higher than reported in the two-photon literature, and a spine turnover of 40% over 5 days, indicating a high level of structural remodeling of hippocampal synaptic circuits. The developed super-resolution imaging approaches enable the examination of microglia-synapse interactions and dendritic spines with unprecedented resolution in the living brain (tissue).

Page generated in 0.2862 seconds