• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 7
  • 7
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The role of the tail of fungal kinesin-3 in binding to early endosomes and their role in plant pathogenicity

Bielska, Ewa January 2013 (has links)
The dimorphic fungus Ustilago maydis is a pathogen of maize and it was used for decades to understand the molecular basis of plant pathogenicity aspects. Recently, much effort went into understanding the cell biology that underlies the virulence of U. maydis. It was shown previously that early endosomes (EEs) move bidirectionally within fungal hyphal cells. Although it was shown that the motility of EEs facilitates growth of the infectious hypha and mutants defective for kinesin-3 (Kin3), the major EE transporter, exhibit impaired polarized growth, the importance of EEs and their motility in plant colonization is not known. The first part of this thesis is focused on the role of EE motility during plant infection. In collaboration with Natalie Steinberg, who performed the plant infection assays, I used a synthetic molecular anchor, K1rPX, to block the motility of EEs at early and late stages during the host plant infection and I found that EE motility is essential during the first two days of pathogenic development, when infectious hyphae exhibit most prominent elongation, whereas blockage of EE motility after 3 days post infection does not inhibit plant colonization. Moreover, I documented that the blockage of EE motility during early stages of the infection causes high plant defence response, which means that the pathogen becomes recognized by the host plant defence system. These results indicate that EE motility is crucial during initial stages of the plant host infection and enables colonization by U. maydis and additionally suggests involvement of EEs in some defence response machinery. The second part of the thesis addresses the relationship between Kin3, the major motor for EE motility, and the microtubule (MT) array. I demonstrate here that Kin3 uses all MT tracks available in the cell, which is in contrast to published results in other systems. In the third part I focused on the interaction between Kin3 and the EEs. I found that the pleckstrin homology (PH) domain localized at the distal part of the Kin3 tail is of minor importance for EE association. This conclusion is supported by in vivo experiments, showing that truncated Kin3PH, which lacks the PH domain, was still able to bind to the organelles. By systematic truncation of parts of the Kin3 tail I found two adjacent regions, a DUF3694 domain and a "linker" region, that are important for binding of Kin3 to EEs. By using a synthetic anchor composed of Kin1 rigor domain and selected Kin3 domains I proved that both domains anchor the EEs to MTs and inhibit EE motility. I also showed that the PH domain is not able to block EE motility. In collaboration with Dr. Nicholas Harmer, who performed structural modelling of selected PH domains, I demonstrated that the PH domain is likely to interact with the motor domain of Kin3. This result was confirmed by using a yeast-two hybrid approach and a protein affinity assay. This indicates a globular organization of the Kin3 motor, which was confirmed by a split-YFP assay in living cells. Deletion of the PH domain and most probably lack of intramolecular interaction between the tail and motor domain reduces Kin3 motility parameters like velocity, frequency and run length indicating that the interaction of the PH domain with the motor domain has a role in the control of Kin3 motility.
2

Targeting Pleckstrin Homology Domains for the Inhibition of Cancer Growth and Metastasis

Moses, Sylvestor Andrea January 2013 (has links)
Pleckstrin homology (PH) domains are structurally conserved domains, which generally bind to phosphatidylinositol phosphate (PtdInsP) lipids. They are present in a variety of proteins, including those that are upregulated in cancer growth and metastasis, and represent a crucial component of intracellular signaling cascades and membrane translocation. Thus, they may be considered as attractive targets for cancer drug therapy. AKT (protein kinase B), a pleckstrin homology lipid binding domain and a serine/threonine kinase-containing protein, is a key component of the phophatidylinositol-3-kinase (PI3K)/AKT cell survival signaling pathway which is activated in a variety of cancers, including prostate, pancreatic, and skin cancers. In this study, I report the finding of a novel inhibitor of AKT; PH-427. I describe its effects on binding to the PH domain of AKT thus preventing its binding to PtdIns3-P at the plasma membrane and subsequent activation. In vivo testing of the drug led to reduction of tumor size and numbers in a mouse pancreatic cancer model. Additional testing of PH-427 on squamous cell carcinomas revealed that the drug is able to reduce tumor burden and multiplicity in vivo when topically applied. Thus, we demonstrate proof-of-principle in targeting PH domains as a viable cancer drug therapy option. The effects of PH-427 raised the intriguing possibility that targeting PH domains may have beneficial effects in other signaling pathways with PH domain-containing proteins. Guanine exchange factors (GEFs) contain a Dbl homology (DH) domain and a PH domain and have been shown to be involved in the process of metastasis. More specifically, RacGEFs activate Rac1 GTPase by facilitating the exchange of GDP to GTP. Over-expression of certain GEFs has been shown to contribute to increased malignancy in a variety of cancers. T-lymphoma invasion and metastasis-inducing protein-1 (Tiam1) is a highly conserved GEF and contains an N-terminal pleckstrin homology domain (nPH) and a DH/C-terminal PH domain (cPH). Tiam1 has been found to be over-expressed in several cancers, including breast, colon and prostate cancers. In this study, I describe the identification, development, experimental testing, and potential mechanism of action of novel small molecule inhibitors targeting the RacGEF Tiam1 to inhibit prostate cancer bone metastasis.
3

Functional characterization of cellulose and chitin synthase genes in Oomycetes / Funktionell karaktärisering av cellulosa- och kitinsyntasgener i oomyceter

Fugelstad, Johanna January 2011 (has links)
Some species of Oomycetes are well studied pathogens that cause considerable economical losses in the agriculture and aquaculture industries. Currently, there are no chemicals available that are environmentally friendly and at the same time efficient Oomycete inhibitors. The cell wall of Oomycetes consists of b-(1à3) and b-(1à6)-glucans, cellulose and in some species minute amounts of chitin. The biosynthesis of cellulose and chitin in Oomycetes is poorly understood. However, cell wall synthesis represents a potential target for new Oomycete inhibitors. In this work, cellulose and chitin synthase genes and gene products were analyzed in the plant pathogen Phytophthora infestans and in the fish pathogen Saprolegnia monoica.   A new Oomycete CesA gene family was identified, containing four subclasses of genes designated as CesA1 to 4. The gene products of CesA1, 2 and 4 contain pleckstrin homology (PH) domains located at the N-terminus, which is unique to the Oomycete CesAs. Our results show that the SmCesA2 PH domain binds to phosphoinositides, F-actin and microtubules in vitro and can co-localize with F-actin in vivo. Functional characterization of the CesA genes by gene silencing in P. infestans led to decreased cellulose content in the cell wall. The cellulose synthase inhibitors DCB and Congo Red inhibited the growth of the mycelium of S. monoica and had an up-regulating effect on SmCesA gene expression. Zoospores from P. infestans treated with DCB were unable to infect potato leaves. In addition, two full-length chitin synthase genes (Chs) were analyzed from S. monoica.  Expression of SmChs2 in yeast yielded an active recombinant protein. The biochemical characterization of the in vitro product of SmChs2 confirmed that the protein is responsible for chitin formation. The chitin synthase inhibitor nikkomycin Z inhibited the SmChs2 both in vivo and in vitro.   Altogether these results show that at least some of the CesA1-4 genes are involved in cellulose biosynthesis and that synthesis of cellulose is crucial for infection of potato by P. infestans. The PH domain is involved in the interaction of CesA with the cytoskeleton. In addition, we firmly demonstrate that the SmChs2 gene encodes a catalytically active chitin synthase. / QC 20110531
4

Structural studies of Gαq signaling and regulation

Shankaranarayanan, Aruna 07 November 2012 (has links)
Gαq signaling is implicated in a number of physiological processes that include platelet activation, cardiovascular development and smooth muscle function. Historically, Gαq is known to function by activating its effector, phospholipase Cβ. Desensitization of Gαq signaling is mediated by G-protein coupled receptor kinases (GRK) such as GRK2 that phosphorylates the activated receptor and also sequesters activated Gαq and Gβγ subunits. Our crystal structure of Gαq-GRK2-Gβγ complex shows that Gαq forms effector-like interactions with the regulator of G-protein signaling (RGS) homology domain of GRK2 involving the classic effector-binding site of Gα subunits, raising the question if GRK2 can itself be a Gáq effector and initiate its own signaling cascade. In the structure, Gα and Gβγ subunits are completely dissociated from one another and the orientation of activated Gαq with respect to the predicted cell membrane is drastically different from its position in the inactive Gαβγ heterotrimer. Recent studies have identified a novel Gαq effector, p63RhoGEF that activates RhoA. Our crystal structure of the Gαq-p63RhoGEF-RhoA complex reveals that Gαq interacts with both the Dbl homology (DH) and pleckstrin homology (PH) domains of p63RhoGEF with its C-terminal helix and its effector-binding site, respectively. The structure predicts that Gαq relieves auto-inhibition of the catalytic DH domain by the PH domain. We show that Gαq activates p63RhoGEF-related family members, Trio and Kalirin, revealing several conduits by which RhoA is activated in response to Gq-coupled receptors. The Gαq effector-site interaction with p63RhoGEF/GRK2 does not overlap with the Gαq-binding site of RGS2/RGS4 that function as GTPase activating proteins (GAPs). This suggests that activated G proteins, effectors, RGS proteins, and activated receptors can form high-order complexes at the cell membrane. We confirmed the formation of RGS-Gαq-effector complexes and our results suggest that signaling pathways initiated by GRK2 and p63RhoGEF are regulated by RGS proteins via both allosteric and GAP mechanisms. Our structural studies of Gαq signaling provide insight into protein-protein interactions that induce profound physiological changes. Understanding such protein interfaces is a key step towards structure-based drug design that can be targeted to treat diseases concerned with impaired Gαq signaling. / text
5

Characterization of specific domains of the cellulose and chitin synthases from pathogenic oomycetes

Brown, Christian January 2015 (has links)
Some oomycetes species are severe pathogens of fish or crops. As such, they are responsible for important losses in the aquaculture industry as well as in agriculture. Saprolegnia parasitica is a major concern in aquaculture as there is currently no method available for controlling the diseases caused by this microorganism. The cell wall is an extracellular matrix composed essentially of polysaccharides, whose integrity is required for oomycete viability. Thus, the enzymes involved in the biosynthesis of cell wall components, such as cellulose and chitin synthases, represent ideal targets for disease control. However, the biochemical properties of these enzymes are poorly understood, which limits our capacity to develop specific inhibitors that can be used for blocking the growth of pathogenic oomycetes. In our work, we have used Saprolegnia monoica as a model species for oomycetes to characterize two types of domains that occur specifically in oomycete carbohydrate synthases: the Pleckstrin Homology (PH) domain of a cellulose synthase and the so-called ‘Microtubule Interacting and Trafficking’ (MIT) domain of chitin synthases. In addition, the chitin synthase activity of the oomycete phytopathogen Aphanomyces euteiches was characterized in vitro using biochemical approaches. The results from our in vitro investigations revealed that the PH domain of the oomycete cellulose synthase binds to phosphoinositides, microtubules and F-actin. In addition, cell biology approaches were used to demonstrate that the PH domain co-localize with F-actin in vivo. The structure of the MIT domain of chitin synthase (CHS) 1 was solved by NMR. In vitro binding assays performed on recombinant MIT domains from CHS 1 and CHS 2 demonstrated that both proteins strongly interact with phosphatidic acid in vitro. These results were further supported by in silico data where biomimetic membranes composed of different phospholipids were designed for interaction studies. The use of a yeast-two-hybrid approach suggested that the MIT domain of CHS 2 interacts with the delta subunit of Adaptor Protein 3, which is involved in protein trafficking. These data support a role of the MIT domains in the cellular targeting of CHS proteins. Our biochemical data on the characterization of the chitin synthase activity of A. euteiches suggest the existence of two distinct enzymes responsible for the formation of water soluble and insoluble chitosaccharides, which is consistent with the existence of two putative CHS genes in the genome of this species. Altogether our data support a role of the PH domain of cellulose synthase and MIT domains of CHS in membrane trafficking and cellular location. / <p>QC 20151014</p>
6

Computational studies of signalling at the cell membrane

Lumb, Craig Nicholas January 2012 (has links)
In order to associate with the cytoplasmic leaflet of the plasma membrane, many cytosolic signalling proteins possess a distinct lipid binding domain as part of their overall fold. Here, a multiscale simulation approach has been used to investigate three membrane-binding proteins involved in cellular processes such as growth and proliferation. The pleckstrin homology (PH) domain from the general receptor for phosphoinositides 1 (GRP1-PH) binds phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P₃) with high affinity and specificity. To investigate how this peripheral protein is able to locate its target lipid in the complex membrane environment, Brownian dynamics (BD) simulations were employed to explore association pathways for GRP1-PH binding to PI(3,4,5)P₃ embedded in membranes with different surface charge densities and distributions. The results indicated that non-PI(3,4,5)P₃ lipids can act as decoys to disrupt PI(3,4,5)P₃ binding, but that at approximately physiological anionic lipid concentrations steering towards PI(3,4,5)P₃ is actually enhanced. Atomistic molecular dynamics (MD) simulations revealed substantial membrane penetration of membrane-bound GRP1-PH, evident when non-equilibrium, steered MD simulations were used to forcibly dissociate the protein from the membrane surface. Atomistic and coarse grained (CG) MD simulations of the phosphatase and tensin homologue deleted on chromosome ten (PTEN) tumour suppressor, which also binds PI(3,4,5)P₃, detected numerous non-specific protein-lipid contacts and anionic lipid clustering around PTEN that can be modulated by selective in silico mutagenesis. These results suggested a dual recognition model of membrane binding, with non-specific membrane interactions complementing the protein-ligand interaction. Molecular docking and MD simulations were used to characterise the lipid binding properties of kindlin-1 PH. Simulations demonstrated that a dynamic salt bridge was responsible for controlling the accessibility of the binding site. Electrostatics calculations applied to a variety of PH domains suggested that their molecular dipole moments are typically aligned with their ligand binding sites, which has implications for steering and ligand electrostatic funnelling.
7

Role of AMP-Activated Protein Kinase in Cancer Cell Survival under Matrix-Deprived Conditions

Saha, Manipa January 2015 (has links) (PDF)
Cancer progression is a multi-step process requiring cells to acquire specific properties that aid the neoplastic growth. One such property is the ability to survive in the absence of matrix-attachment, a critical necessity for cells to traverse in circulation and seed metastases. Therefore, understanding the signalling mechanisms that protect cells from undergoing death in matrix-deprived condition, termed as anoikis, is important. We have used two systems to study this, one involving experimental transformation model, and another involving cancer cell lines. In the in vitro transformation model system involving the serial introduction of oncogenes, the ability to survive in anchorage-independent condition and generate spheres/colonies was dependent on the presence of the Simian Virus Small T antigen, SV40 ST. We identified that the viral antigen mediates its effects, at least in part, by activating the master metabolic regulator and cellular stress kinase AMP-activated protein kinase (AMPK) leading to maintenance of energy homeostasis. Consistent with this, our lab has previously identified both activation of AMPK upon matrix-deprivation in breast cells, as well as its requirement for survival under these conditions. However, a pathway often associated with survival under matrix-deprivation is the PI3K/Akt pathway. Surprisingly, we observed an AMPK-dependent decrease in Akt activity under conditions of matrix-detachment. Since this was contrary to the general notion, we probed deeper into a possible crosstalk between these two kinases. Our work revealed that AMPK activation in suspension inhibits Akt via upregulation of a known Akt phosphatase, pleckstrin homology domain leucinrich repeat protein phosphatise (PHLPP). We further show that the AMPK-PHLPP-Akt signalling axis is important for anoikis-resistance and metastasis. In addition, our results point to a yet unidentified protumorigenic role of PHLPP in breast cancer progression. With an aim to identify cellular proteins differentially regulated upon AMPK activation in breast cancer cells, we undertook a proteomics approach. Using 2-dimensional gel electrophoresis followed by mass spectrometric analysis, we identified some candidate proteins. We have validated the increase in levels of one of these proteins, annexin A2, in cancer cells upon AMPK activation. In summary, the present study unveils novel oncogenic functions of AMPK in cancer cells under the stress of matrix-deprivation. Furthermore, our results elucidate a double-negative feedback loop between two critical cellular kinases AMPK and Akt, and also identify a novel pro-tumorigenic role of PHLPP in breast cancer. In addition, we identify PHLPP and annexin A2 as novel proteins upregulated by AMPK in cancer cells. Thus, our results begin to identify pathways utilised by cancer cells to aid anchorage-independent growth, a critical step for cancer metastasis. Based on our results, inhibition of AMPK or perturbation of signalling axes involving AMPK, and PHLPP or annexin A2 might be considered as novel therapeutic approaches to combat cancer progression

Page generated in 0.0743 seconds