Spelling suggestions: "subject:"pluronic"" "subject:"gluronic""
31 |
Surface Functionalization and Analysis Thereof for an Ovarian Cancer Diagnostic BiosensorAhmad, Asad Ali 01 January 2011 (has links)
Ovarian cancer is the fifth leading cause of cancer death among women in United States and has an alarming 1.4% (1 in 71) lifetime risk. The lack of overt symptoms and the absence of a reliable screening test to detect ovarian cancer result in over 70% of women being diagnosed after the disease has spread beyond the ovary resulting in a poor prognosis. A key characteristic of ovarian cancer is the ability of tumor cells to evade apoptosis, or programmed cell death contributing to the limitless replicative potential, which is a hallmark of all carcinogenesis. There is conclusive evidence that levels of bcl-2 are elevated in ovarian cancer patients' indication that this protein is an ovarian cancer biomarker. The overall goal of this thesis is to functionalize a substrate for specific, sensitive and cost-effective bcl-2 capture. This surface will ultimately be incorporated into an acoustic wave-based diagnostic device for worldwide point-of-care (POC) ovarian cancer detection.
This research looks to assess the capture of this analyte protein on a series of bioconjugated surfaces. For the research to be diagnostically applicable, certain factors reveal themselves as more important than others. Since the surface-bound capture antibody must recognize the bcl-2 protein, it is vital to ensure upright orientation of this specific antibody with high affinity for the analyte. Furthermore once integrated with a nanosensor, the surface will sense a change in the mass on the surface, which requires that the surface is highly resistant to non-specific binding. Bioconjugation techniques were employed to initiate self-assembled monolayers (SAM) of silanes, immobilize antibodies (via amine-crosslinking or direct adsorption of protein A/G) and disperse polyethylene glycol (PEG) reagents to reduce non-specific binding on the glass substrates. 3-aminopropyltrimethoxysilane (3-APTMS) and chlorodimethyloctylsilane (ODMS) were deposited on the surface to create initial hydrophilic and hydrophobic properties on which molecular self-assembly could occur. Testing a variety of assemblies with and without the presence of silanes, amine-crosslinking and PEGylation reagents, the substrate displaying the highest efficacy of bcl-2 capture was revealed. These various surfaces were assessed through contact angle and a novel sandwich enzyme linked immunosorbent assay (ELISA) for sensitivity and specificity of bcl-2 standard capture.
The consistently low background and facile assembly of the ODMS based substrate with direct adsorption of protein A/G and the PEGylation reagent, Pluronic, was deemed the best functionalized surface for non-specific recruitment of the bcl-2 protein. The substrate also consistently displayed low signal-to-noise ratio which was of extreme importance in this research to guarantee the prevention of false-positive results when detecting nascent carcinogenic behavior. Elucidation of this substrate assembly is the first step towards the long term objective of this thesis, which is to construct a cost-effective early ovarian cancer detection device which can be implemented at the point-of-care to those who need it the most. This is ultimately expected to dramatically improve health outcomes for females worldwide.
|
32 |
LAYERED, FLEXIBLE DRUG DELIVERY FILMS FOR THE PREVENTION OF FIBROTIC SCAR TISSUE FORMATIONRabek, Cheryl L. 01 January 2015 (has links)
Open wounds account for about 50% of military injuries and 10% of non‐fatal traffic injuries. Scar tissue formation in these wounds may be reduced or prevented if treated with a combination of molecules whose release is tuned to the healing phases. The goal of this research was to develop flexible, layered drug delivery films for sequential, localized release of anti‐inflammatory, anti‐oxidant, and anti‐fibrotic molecules to soft tissue.
Films were composed of cellulose acetate phthalate (CAP) and Pluronic F‐127 (Pluronic). To impart flexibility, plasticizers, triethyl citrate (TEC) or tributyl citrate (TBC), were added. Mechanical analysis was performed on films as prepared and following phosphate‐buffered saline incubation to determine property changes after implantation. Tensile tests revealed higher plasticizer content increased film elongation but decreased elastic modulus and ultimate tensile strength. TEC films elongated twice as much as those with TBC. After incubation, properties increased because plasticizer leached from films. Micro computerized tomography and scanning electron microscopy determined how erosion and plasticizer leaching affected the film’s structures before and after incubation. Porosity increased as plasticizer content increased; however, plasticizer content did not significantly affect erosion rates.
Next, effects of drugs with plasticizers on film erosion, release, and mechanical properties were investigated. Films were loaded with quercetin, an anti‐oxidant, or pirfenidone, an anti‐fibrotic, and plasticized with TEC or TBC. TEC‐plasticized films containing quercetin released drug at a slower rate than TBC films. Pirfenidone‐loaded films released drug at a faster rate than erosion occurred for both plasticizers. Increased pirfenidone loading resulted in significantly higher modulus and decreased elongation, an anti‐plasticizer effect. Increasing quercetin loading significantly increased elongation. Size, solubility, and structure differences between quercetin and pirfenidone affected drug interaction with the films and the consequent mechanical and release properties.
Cell studies found TBC to be toxic even in low concentrations. Consequently, only TEC was further analyzed. Layered devices containing two drugs demonstrated sequential release regardless of drug order. Plasticizer concentration did not significantly affect the release profiles. Lastly, in vitro and in vivo 9‐layered device studies sequentially released drugs confirming the research objective: sequential, local release of anti‐inflammatory, anti‐oxidant, and anti‐fibrotic molecules from CAPPluronic films.
|
33 |
Mobility of small molecules in PEO-PPO-PEO triblock copolymer (F127 and P104) hydrogelsHosseini Nejad, Heliasadat 12 August 2021 (has links)
Pluronics are triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) available in different molecular weights and PPO/PEO ratios. Pluronic hydrogels are able to dissolve hydrophobic compounds and they have application in different areas including drug delivery systems and oil recovery. The structure of Pluronic polymers can be designed for specific application by changing the size and ratio of the PPO and PEO blocks. In aqueous environments, the PPO blocks of different unimers form aggregates as they are more hydrophobic compared to the PEO blocks, and in the aggregates the PPOs have less exposure to water. The PEO blocks that are still hydrophilic remain soluble in water and form a shell around the PPO aggregated core. Moreover, some of the Pluronic copolymer aqueous solutions can form hydrogels at elevated temperatures. The aim of this thesis is to study the microheterogeneity of two different Pluronic hydrogels using singlet excited state probes and also study the mobility of small molecules in Pluronic hydrogels using triplet excited state probes.
In the first project, the properties of different microenvironments in Pluronic F127 (PEO99PPO65PEO99) were characterized. The quenching of singlet excited state probes was used to determine the number and characteristics of solubilization sites in F127 hydrogels. This method was used to gain information on the accessibility of different quenchers to singlet excited molecules bound to the micellar structures. Singlet excited states are short lived, and these excited states do not move within the gel before their decay to the ground state. The techniques used for these studies were steady-state fluorescence and time-resolved fluorescence spectroscopies. My results showed that there are different solubilization sites in F127 micelles and the accessibility of quenchers to the singlet excited molecules bound to the micellar structure depends on the nature of the quencher and the size of the excited molecules.
In the second project, the different microenvironments in Pluronic P104 (PEO27PPO61PEO27) were characterized, and these results were compared with those obtained for the Pluronic F127. Pluronic P104 has similar units of PPO blocks as F127 but different units of PEO blocks which results in different properties between these two Pluronic copolymers. My results showed that the solubilization sites inside Pluronic micelles changes with the change in PEO/PPO ratio.
In the third project, I studied the mobility of different small molecules between aqueous and micellar environments in the F127 hydrogel by quenching triplet excited state probes. Excited triplet states are suitable for such studies because their lifetimes are longer than the lifetimes for singlet excited states. The laser flash photolysis technique was used for this aim. The results showed that the exit from the micellar environment is slow and depend on the size and hydrophobicity of the probe molecules. / Graduate / 2022-05-11
|
34 |
Pharmacokinetics of Ultrasonically-Released, Micelle-Encapsulated Doxorubicin in the Rat Model and its Effect on Tumor GrowthStaples, Bryant J. 15 May 2007 (has links) (PDF)
Chemotherapy is one of the most successful cancer treatments used today. Unfortunately, the amount of chemotherapy a patient can receive is limited by the associated negative side effects, such as cardiotoxicity, immune system suppression, and nephrotoxicity. Encapsulation of these drugs, Doxorubicin (DOX) in particular, in stabilized Pluronic micelles (Plurogel TM) shows success in limiting these harmful side effects. In previous studies, low-frequency ultrasound (US) has been shown, in vitro, to locally release DOX from these micelles. In this study, a novel drug delivery system involving the encapsulation of DOX in Plurogel and the release of the drug at the tumor site using ultrasound was studied in vivo using rats. These studies determined the effect of ultrasonically released drugs on tumor growth rate and drug delivery to the tumor tissue. Concurrently, different frequencies (20 kHz, 500 kHz) were tested for the same effects. Treatments consisted of micelle-encapsulated doxorubicin injected intravenously followed by ultrasound application to one of the two bilateral tumors. Also, in different experiments, pharmacokinetic studies of the drug in the heart, liver, leg muscle, and tumors were performed up to a period of one week after treatment. Results showed that tumors treated with ultrasound displayed, on average, slower growth rates than non-insonated tumors (P = 0.0047). Also, insonated tumors displayed a weak increased concentration of DOX than non-insonated tumors within the first eight hours after treatment (P = 0.064). However, comparison between tumors which received 20 kHz and 500 kHz ultrasound treatment showed no statistical difference (P = 0.9275) in tumor growth rate or DOX concentration. It is noteworthy that the insonated tumor has slower growth even though the amount of DOX was not that much greater in the non-insonated tumor. This suggests that US also affects the uptake and/or processing of the DOX by the tumor cells, and that the therapeutic effect may not be attributed solely to a higher concentration of drug released by insonation. Pharmacokinetic studies showed significant drug accumulation in the heart but no accumulation in the liver, skeletal leg muscle, or tumors over the course of four weeks of consecutive weekly injections of DOX-encapsulated Plurogel. After 24 hours, DOX concentration remains the greatest in the tumors, regardless of whether they received ultrasound or not.
|
35 |
High-Frequency Ultrasound Drug Delivery and CavitationDiaz, Mario Alfonso 02 January 2007 (has links) (PDF)
The viability of a drug delivery system which encapsulates chemotherapeutic drugs (Doxorubicin) in the hydrophobic core of polymeric micelles and triggers release by ultrasound application was investigated at an applied frequency of 500 kHz. The investigation also included elucidating the mechanism of drug release at 70 kHz, a frequency which had previously been shown to induce drug release. A fluorescence detection chamber was used to measure in vitro drug release from both Pluronic and stabilized micelles and a hydrophone was used to monitor bubble activity during the experiments. A threshold for release between 0.35 and 0.40 in mechanical index was found at 70 kHz and shown to correspond with the appearance of the subharmonic signal in the acoustic spectrum. Additionally, drug release was found to correlate with increase in subharmonic emission. No evidence of drug release or of the subharmonic signal was detected at 500 kHz. These findings confirmed the role of cavitation in ultrasonic drug release from micelles. A mathematical model of a bubble oscillator was solved to explore the differences in the behavior of a single 10 um bubble under 70 and 500 kHz ultrasound. The dynamics were found to be fundamentally different; the bubble follows a period-doubling route to chaos at 500 kHz and an intermittent route to chaos at 70 kHz. It was concluded that this type of "intermittent subharmonic" oscillation is associated with the apparent drug release. This research confirmed the central role of cavitation in ultrasonically-triggered drug delivery from micelles, established the importance of subharmonic bubble oscillations as an indicator, and expounded the key dynamic differences between 70 and 500 kHz ultrasonic cavitation.
|
36 |
Nanoparticles for multifunctional drug delivery systemsQin, Jian January 2007 (has links)
Multifunctional drug delivery systems incorporated with stimuli-sensitive drug release, magnetic nanoparticles and magnetic resonance (MR) T2 contrast agents is attracting increasing attention recently. In this thesis, works on polymer nanospheres response to temperature change, superparamagnetic iron oxide nanoparticles (SPION)/polymeric composite materials for MR imaging contrast agents are summarized. A “shell-in-shell” polymeric structure has been constructed through a “modified double-emulsion method”. Thermosensitive inner shell is comprised of poly(N-isopropylacrylamide) which undergoes phase transition at body temperature. Such a feature could facilitate drug release at an elevated temperature upon administration. Furthermore, the dual-shell structure is covered by a layer of gold nanoparticles. According to the cytotoxicity tests, the biocompatibility is shown to be enhanced due to the layer of gold. SPION have been prepared using a high temperature decomposition method. Particle growth of SPION is monitored by transmission electron microscope and synchrotron X-ray diffraction. Poly(L,L-lactide)@SPION (PLLA@SPION) composite particles have been prepared through surface-initiated ring-opening polymerization which has been developed in our lab. For biomedical applications, it is essential to transfer the particles to physiological solutions from organic solutions. Phase transfer of SPION has been carried out by utilizing small molecules. Stability at the neutral pH is of large concern for such transfer systems. A novel phase transfer agent, Pluronic F127 (PF127), a triblock copolymer has been applied and the stability of the aqueous PF127@oleic acid (OA)@SPION solution has been greatly enhanced over a broad pH range. Most interestingly, PF127@OA@SPION show remarkable efficacy as T2 contrast agents as indicated by relaxometric measurements compared with commercially available products. / QC 20101115
|
37 |
DESIGN OF CONTROLLED AND TARGETED THERMAL SENSITIZER FOR ENHANCING RADIOFREQUENCY ABLATIONKrupka, Tianyi M. January 2010 (has links)
No description available.
|
38 |
TWO SURFACE MODIFICATION METHODS TO REDUCE PROTEIN FOULING IN MICROFILTRATION MEMBRANESRAJAM, SRIDHAR 04 April 2007 (has links)
No description available.
|
39 |
Interaction of water-soluble surfactants with self-assembled lipid monolayers at the vapor-liquid interface: equilibrium and dynamic phenomenaNigam, Poonam 22 September 2006 (has links)
No description available.
|
40 |
Pluronic® block-copolymers in medicine: from chemical and biological versatility to rationalisation and clinical advancesPitto-Barry, Anaïs, Barry, Nicolas P.E. 24 March 2014 (has links)
Yes / This mini-review highlights the latest advances in the chemistry and biology of Pluronic® triblock copolymers. We focus on their applications in medicine, as drug delivery carriers, biological response modifiers, and pharmaceutical ingredients. Examples of drug delivery systems and formulations currently in clinical use, clinical trials or preclinical development are highlighted. We also discuss the role that Pluronic® copolymers may play in the innovative design of new nanomedicines in the near future. / We thank the Leverhulme Trust (Early Career Fellowship no. ECF-2013-414 to NPEB), the University of Warwick (Grant no. RDF 2013-14 to NPEB) and EPSRC (EP/G004897/1 to APB) for support.
|
Page generated in 0.0396 seconds