• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 8
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 48
  • 48
  • 21
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development and Use of Polarized Light Methods to Assess Structure and Composition of Biological Tissue

Wood, Michael Frank Gunter 31 August 2011 (has links)
The use of polarized light for characterization of biological tissues has received increased attention in recent years due to the wealth of information available in the interactions of polarized light with tissue and the noninvasive nature of optical radiation. While the depolarizing effects of multiple scattering complicate the use of polarimetry in tissue, many biological constituents affect the polarization of light such as collagen, muscle fibers, and glucose. Thus, if the effects of scattering can be accounted for⎯or utilized in the analysis⎯polarized light can potentially be used as a probe of tissue status. This thesis presents advancements in the techniques for the simulation of polarized light in tissue-simulating media, and explores two biomedical applications. Previous Monte Carlo models for simulation of polarized light propagation in tissue-simulating media do not include the effects of birefringence and optical activity, two polarizing effects of useful diagnostic potential. To overcome this limitation, our model was extended to include both these effects simultaneously, and then experimentally validated using a novel polarization phantom system. The use of polarized light for characterization of the myocardium, and specifically towards monitoring stem cell regenerative treatments of myocardial infarction, was investigated experimentally as a novel application for polarimetry. The potential for this technique is based on the changes in myocardial structure that occur with infarction and subsequent regeneration, and the associated changes in tissue birefringence. The use of polarized light for noninvasive tissue analyte monitoring, particularly glucose, was also investigated based on the optical activity exhibited by many tissue analytes due to their chiral structure. In this study, a novel combined optical polarization and intensity approach was developed and tested on Monte Carlo simulated data. The studies presented in thesis introduce new methods for polarization simulation and analysis in biological tissue and demonstrate potential for polarimetry in monitoring myocardial regeneration and noninvasive measurements of tissue analytes.
2

Development and Use of Polarized Light Methods to Assess Structure and Composition of Biological Tissue

Wood, Michael Frank Gunter 31 August 2011 (has links)
The use of polarized light for characterization of biological tissues has received increased attention in recent years due to the wealth of information available in the interactions of polarized light with tissue and the noninvasive nature of optical radiation. While the depolarizing effects of multiple scattering complicate the use of polarimetry in tissue, many biological constituents affect the polarization of light such as collagen, muscle fibers, and glucose. Thus, if the effects of scattering can be accounted for⎯or utilized in the analysis⎯polarized light can potentially be used as a probe of tissue status. This thesis presents advancements in the techniques for the simulation of polarized light in tissue-simulating media, and explores two biomedical applications. Previous Monte Carlo models for simulation of polarized light propagation in tissue-simulating media do not include the effects of birefringence and optical activity, two polarizing effects of useful diagnostic potential. To overcome this limitation, our model was extended to include both these effects simultaneously, and then experimentally validated using a novel polarization phantom system. The use of polarized light for characterization of the myocardium, and specifically towards monitoring stem cell regenerative treatments of myocardial infarction, was investigated experimentally as a novel application for polarimetry. The potential for this technique is based on the changes in myocardial structure that occur with infarction and subsequent regeneration, and the associated changes in tissue birefringence. The use of polarized light for noninvasive tissue analyte monitoring, particularly glucose, was also investigated based on the optical activity exhibited by many tissue analytes due to their chiral structure. In this study, a novel combined optical polarization and intensity approach was developed and tested on Monte Carlo simulated data. The studies presented in thesis introduce new methods for polarization simulation and analysis in biological tissue and demonstrate potential for polarimetry in monitoring myocardial regeneration and noninvasive measurements of tissue analytes.
3

Functions of animal polarization sensitivity

Foster, James Jonathan January 2016 (has links)
No description available.
4

Nondestructive evaluation of an environmentally friendly conversion coating for magnesium alloys using optical measurement techniques

Zuniga, David 30 October 2006 (has links)
Magnesium alloys have one of the highest specific strengths of all construction metals used. Specifically, magnesium alloy castings are used in the aerospace industry to reduce the weight of aerospace vehicles. Coating systems must be employed to prevent corrosion of these magnesium alloys as they are also the most corrosion prone construction metals. The use of chromium is employed for the conversion coating which forms the foundation of many of these coating systems. In an effort to phase these harmful chromates out of the coating system and continue to use magnesium alloys, an environmentally friendly conversion coating has been developed. This paper explores the best types of methods used to evaluate the thickness and coating coverage of the environmentally friendly conversion coating. Destructive and nondestructive techniques are developed to examine the thickness and surface coverage of this environmentally friendly coating. Specifically an eddy current measurement technique, light, confocal, scanning electron and transmission electron microscopy techniques are used to determine the coating thickness of the environmentally friendly coating through destructive evaluation. Three nondestructive evaluation techniques, including polarized light microscopy, infrared spectroscopy (Fourier Transform and Raman) and an infrared proximity sensor are used to determine surface coverage of the environmentally friendly coating.
5

CHIRAL POLYMER PHOTODETECTOR

Zhang, YIWEI 25 March 2014 (has links)
A polymer photodetector is fabricated using polythiophene with chiral alkyl side chains. The Cotton effect is observed in the CD spectrum of the photodetector, indicating an unequal absorbance of left- and right-handed circular polarized light (CPL). The photodetector is proven to be able to identify incident left- and right-handed CPL. Polymer photodetectors that are made from R- and S-limonene induced achiral polymers are fabricated. A “hot spin-coating” process is introduced to cast uniform limonene induced polymer films. As a result of chirality transfer, Cotton effects are also observed in these photodetectors’ CD spectra. A model is suggested to explain the chirality generation of the polythiophene with chiral alkyl side chains and limonene induced achiral polymers. / Thesis (Master, Chemistry) -- Queen's University, 2014-03-25 14:37:23.168
6

Polarimetric Characterization Of Random Electromagnetic Beams And Applications

Mujat, Mircea 01 January 2004 (has links)
Polarimetry is one of the principal means of investigating the interaction of light with matter. Theoretical models and experimental techniques are presented in this dissertation for polarimetric characterization of random electromagnetic beams and of signatures of random media in different scattering regimes and configurations. The degree of polarization rather than the full description of the state of polarization is of interest in multiple scattering and free space propagation where the statistical nature and not the deterministic component of light bears the relevant information. A new interferometric technique for determining the degree of polarization by measuring the intensity fluctuations in a Mach-Zehnder interferometric setup is developed. For this type of investigations, one also needs a light source with a controllable degree of polarization. Therefore, also based on a Mach-Zehnder interferometer, we proposed a new method for generating complex random electromagnetic beams. As a direct application of the cross-spectral density matrix formalism, it is shown that the spectral and the polarimetric characteristics of light can be controlled by adjusting the correlations between parallel components of polarization propagating through the two arms of the interferometer. When optical beams are superposed in the previous applications it is desirable to understand how their coherence and polarimetric characteristics are combined. A generalization of the interference laws of Fresnel and Arago is introduced and as a direct application, a new imaging polarimeter based on a modified Sagnac interferometer is demonstrated. The system allows full polarimetric description of complex random electromagnetic beams. In applications such as active illumination sensing or imaging through turbid media, one can control the orientation of the incident state of polarization such that, in a given coordinate system, the intensities are equal along orthogonal directions. In this situation, our novel interferometric technique has a significant advantage over standard Stokes imaging polarimetry: one needs only one image to obtain both the degree of polarization and the retardance, as opposed to at least three required in classical Stokes polarimetry. The measurement of the state of polarization is required for analyzing the polarization transfer through systems that alter it. Two innovative Mueller matrix measurement techniques are developed for characterizing scattering media, either in quasi real-time, or by detection of low level signals. As a practical aspect of Mueller polarimetry, a procedure for selecting the input Stokes vectors is proposed. The polarimetric signatures of different particulate systems are related to their structural properties and to the size distribution, shape, orientation, birefringent or dichroic properties of the particles. Various scattering regimes and different geometries are discussed for applications relevant to the biomedical field, material science, and remote sensing. The analysis is intended to elucidate practical aspects of single and multiple scattering on polydisperse systems that were not investigated before. It seems to be generally accepted that depolarization effects can only be associated to multiple scattering. It is demonstrated in this dissertation that depolarization can also be regarded as an indication of polydispersity in single scattering. In order to quantify the polarizing behavior of partially oriented cylinders, the polarization transfer for systems consisting of individual layers of partially aligned fibers with different degrees of alignment and packing fractions is also analyzed in this dissertation. It is demonstrated that a certain degree of alignment has the effect of a partial polarizer and that the efficiency of this polarizer depends on the degree of alignment and on the packing fraction of the system. In specific applications such as long range target identification, it is important to know what type of polarization is better preserved during propagation. The experimental results demonstrate that for spherical particles smaller than the wavelength of light, linear polarization is better preserved than circular polarization when light propagates through turbulent media. For large particles, the situation is reversed; circular polarization is better preserved. It is also demonstrated here that this is not necessarily true for polyhedral or cylindrical particles, which behave differently. Optical activity manifests as either circular birefringence or circular dichroism. In this dissertation, a study is presented where both the effect of optical activity and that of multiple scattering are considered. This situation is relevant for medical applications and remote sensing of biological material. It is demonstrated here that the output state of polarization strongly depends on the optical density of the scattering medium, the optical rotatory power and the amount of circular dichroism associated to the scattering medium. This study shows that in the circular birefringence case, scattering and optical activity work together in depolarizing light, while in the dichroic case the two effects compete with each other and the result is a preservation of the degree of polarization. To characterize highly diffusive media, a very simple model is developed, in which the scattering is analyzed using the Mueller matrix formalism in terms of surface and volume contributions.
7

ANISOTROPIC POLARIZED LIGHT SCATTER AND MOLECULAR FACTOR COMPUTING IN PHARMACEUTICAL CLEANING VALIDATION AND BIOMEDICAL SPECTROSCOPY

Urbas, Aaron Andrew 01 January 2007 (has links)
Spectroscopy and other optical methods can often be employed with limited or no sample preparation, making them well suited for in situ and in vivo analysis. This dissertation focuses on the use of a near-infrared spectroscopy (NIRS) and polarized light scatter for two such applications: the assessment of cardiovascular disease, and the validation of cleaning processes for pharmaceutical equipment.There is a need for more effective in vivo techniques for assessing intravascular disorders, such as aortic aneurysms and vulnerable atherosclerotic plaques. These, and other cardiovascular disorders, are often associated with structural remodeling of vascular walls. NIRS has previously been demonstrated as an effective technique for the analysis of intact biological samples. In this research, traditional NIRS is used in the analysis of aortic tissue samples from a murine knockout model that develops abdominal aortic aneurysms (AAAs) following infusion of angiotensin II. Effective application of NIRS in vivo, however, requires a departure from traditional instrumental principles. Toward this end, the groundwork for a fiber optic-based catheter system employing a novel optical encoding technique, termed molecular factor computing (MFC), was developed for differentiating cholesterol, collagen and elastin through intervening red blood cell solutions. In MFC, the transmission spectra of chemical compounds are used to collect measurements directly correlated to the desired sample information.Pharmaceutical cleaning validation is another field that can greatly benefit from novel analytical methods. Conventionally cleaning validation is accomplished through surface residue sampling followed by analysis using a traditional analytical method. Drawbacks to this approach include cost, analysis time, and uncertainties associated with the sampling and extraction methods. This research explores the development of in situ cleaning validation methods to eliminate these issues. The use of light scatter and polarization was investigated for the detection and quantification of surface residues. Although effective, the ability to discriminate between residues was not established with these techniques. With that aim in mind, the differentiation of surface residues using NIRS and MFC was also investigated.
8

Influência da diminuição da temperatura sobre o fuso meiótico de oócitos de camundongas e de mulheres maturados in vitro / Low temperature influence on meiotic oocyte spindle of mice and humans after maturation in vitro

Claudia Messias Gomes 14 June 2011 (has links)
Introdução: O fuso meiótico dos oócitos de mamíferos pode se despolimerizar quando exposto a pequenas variações de temperatura. Este fato já está bem estabelecido e estudado em oócitos maduros em metáfase II (MII). No entanto, pouco se sabe a respeito da influência da diminuição da temperatura sobre o fuso meiótico dos oócitos imaturos. Desse modo, este estudo tem como objetivos: 1) avaliar a influência da diminuição da temperatura sobre o fuso meiótico de oócitos de camundongas maturados in vitro e 2) avaliar o fuso meiótico em oócitos humanos maturados in vitro submetidos à criopreservação pela técnica de congelação lenta ou por vitrificação quando em estágio de vesícula germinativa. Métodos: Realizaram-se dois experimentos, denominados 1 e 2, sendo o primeiro em oócitos de camundongas e o segundo em oócitos humanos. No experimento 1 oócitos imaturos de camundongas nos estágios de metáfase I (MI), telófase I(TI) e MII foram cultivados nas seguintes temperaturas: 37º C (controle), temperatura ambiente (22oC) e 4º C por 0, 10, 30 e 60 minutos. Após este período de tempo o fuso meiótico oocitário foi avaliado por meio de microscopia de luz polarizada (MLP) (LC-Polscope-Oosight image software) e imunocitoquímica (IC). No experimento 2 oócitos em estágio de vesícula germinativa (GV) coletados de pacientes submetidas à indução da ovulação e fertilização in vitro, foram divididos de forma randômica em três grupos: oócitos a fresco (A), oócitos congelados pela técnica de congelação lenta (B) e oócitos congelados pela técnica de vitrificação (C). Os oócitos a fresco, os descongelados e os aquecidos foram maturados in vitro até estágio de (MII). A análise do fuso meiótico foi realizada por microscópio invertido equipado com uma câmera de vídeo analógica e um sistema de imagens que combina luz polarizada em cristal líquido (ICSI Guard Octax). Resultados: Experimento 1: No tempo 0 e à 37º C, todos os oócitos apresentavam o fuso meiótico visível tanto pela MLP quanto pela IC. À 4º C, o número de oócitos em MI com fuso meiótico visível por meio da MLP foi menor do que com a IC, e descresceu com o tempo, fato que também ocorreu, em menor proporção, com os oócitos em TI. No entanto, a 4º C, o reconhecimento do fuso meiótico dos oócitos em TI foi semelhante tanto para MLP como para IC. Quando os oócitos MII foram expostos à 4º C, a detecção do fuso meiótico teve descréscimo diretamente proporcional ao tempo de cultura quando foi utilizada a MLP, sendo que o mesmo ocorreu para a IC, porém de forma menos pronunciada. À temperatura ambiente houve um pequeno descéscimo na visualização do fuso meiótico tanto por MLP quanto por IC, porém este não foi estatisticamente significativo para os oócitos em TI. Experimento 2: A taxa de sobrevivência imediatamente após o descongelamento/ aquecimento foi de 44,6% para o grupo B e de 79% para o grupo C. Após 24 horas em cultura , estas taxas passaram para 29,2% e 69%, respectivamente. A mediana de tempo para maturação foi de 26 horas para os grupos A e C, e de 27 horas para o grupo B. Ao final da maturação in vitro a porcentagem de oócitos em MII foi menor no grupo B e semelhante nos grupos A e C. Assim como para a detecção do fuso meiótico que foi menor no grupo B e similar nos grupos A e C. Conclusões: Houve diferença na porcentagem de despolimerização do fuso meiótico em resposta à baixa temperatura entre os oócitos de camundongas nos diferentes estágios da divisão meiótica, sendo menor nos oócitos em TI. A porcentagem de despolimerização do fuso meiótico foi diretamente proporcional ao tempo de cultivo, à exceção dos oócitos em TI à temperatura ambiente. Os oócitos hmanos em GV vitrificados apresentaram melhores taxas de sobrevivência quando comparados com oócitos humanos em GV criopreservados pelo congelamento lento. Os oócitos humanos em GV vitrificados apresentaram taxas semelhantes de maturação in vitro e detecção do fuso meiótico polimerizado quando comparados a oócitos a fresco / Introduction: The meiotic spindle of most mammals is sensitive to cooling and depolymerizes even after a slight reduction in temperature. This is well described and studied on matured oocytes at metaphase II (MII). However, little is known about the influence of low temperatures under meiotic spindle of imature oocytes. In this way, we sougth to evaluate: 1) the influence of low temperatures on mice oocyte meiotic spindle matured in vitro e 2) the oocyte meiotic spindle from human oocytes matured in vitro and cryopreserved by slow-rate freezing or vitrification at GV stage. Methods: Two experiments were done: the first one on mice and the second one on women.At experiment 1, immature mice oocytes at metaphase I (MI), telophase I (TI) and MII were cultured at 37º C (control), room temperature (22oC) and 4º C for 0, 10, 30 and 60 minutes and then spindle analysis was made with polarized light microscopy (PLM) (LC-Polscope-Oosight image software) or immunocytochemistry (ICC). At experiment 2, GV oocytes retrieved from women submitted to ovulation induction and in vitro fertilization were randomly divided in three groups: fresh oocytes (A), cryopreserved by slow-freezing (B) and cryopreserved by vitrification (C). Fresh, thawed and warmed oocytes were matured in vitro to metaphase II oocytes (MII). A meiotic spindle analysis was done by polarized light microscopy (ICSI Guard Octax). Results: Experiment 1: At time 0 min and 37º C, all oocytes had polymerized spindles both at PLM or ICC. At 4º C, the number of MI oocytes with detectable spindles at PLM was smaller than those analysed by ICC, and it decreased with time, which had also occured with TI oocytes at a smaller proportion. However, at 4º C, TI meiotic spindle recognition with polarized light microscopy and ICC was comparable. When MII oocytes were cultured at 4º C, the spindle visualization decreased proportionally in correlation with culture time at PLM, and the same happened with ICC in a less pronounced manner. At room temperature there was a little descrease regarding visualization of meiotic spindle, both at PLM and ICC, altought it was not significant for TI oocytes. Experiment 2: Oocyte survival immediately after thawing/warming were 44.6% for group B and 79% for group C. After 24 hours of culture, oocyte survival was 29.2% and 69%, respectively. The median time for maturation was 26 hours for groups A and C, and 27 hours for group B. The percentage of MII after maturation in vitro were smaller in group B and similar between groups A and C. The same oocured for spindle visualization which were lower in group B and similar between groups A and C. Conclusions: There was a difference on the percentages of meiotic spindle depolymerization in response to cooling in mice oocytes at different stages of meiotic division. Spindle depolymerization was lower in TI. Also, meiotic spindle depolimerization was proportional to culture time, except for TI oocytes at room temperature.Vitrified GV oocytes had a better survival when warmed, compared to slow-rate frozen oocytes. Vitrified GV oocytes had similar maturation in vitro rates and polymerized spindles detection when compared to fresh oocytes
9

Influência da diminuição da temperatura sobre o fuso meiótico de oócitos de camundongas e de mulheres maturados in vitro / Low temperature influence on meiotic oocyte spindle of mice and humans after maturation in vitro

Gomes, Claudia Messias 14 June 2011 (has links)
Introdução: O fuso meiótico dos oócitos de mamíferos pode se despolimerizar quando exposto a pequenas variações de temperatura. Este fato já está bem estabelecido e estudado em oócitos maduros em metáfase II (MII). No entanto, pouco se sabe a respeito da influência da diminuição da temperatura sobre o fuso meiótico dos oócitos imaturos. Desse modo, este estudo tem como objetivos: 1) avaliar a influência da diminuição da temperatura sobre o fuso meiótico de oócitos de camundongas maturados in vitro e 2) avaliar o fuso meiótico em oócitos humanos maturados in vitro submetidos à criopreservação pela técnica de congelação lenta ou por vitrificação quando em estágio de vesícula germinativa. Métodos: Realizaram-se dois experimentos, denominados 1 e 2, sendo o primeiro em oócitos de camundongas e o segundo em oócitos humanos. No experimento 1 oócitos imaturos de camundongas nos estágios de metáfase I (MI), telófase I(TI) e MII foram cultivados nas seguintes temperaturas: 37º C (controle), temperatura ambiente (22oC) e 4º C por 0, 10, 30 e 60 minutos. Após este período de tempo o fuso meiótico oocitário foi avaliado por meio de microscopia de luz polarizada (MLP) (LC-Polscope-Oosight image software) e imunocitoquímica (IC). No experimento 2 oócitos em estágio de vesícula germinativa (GV) coletados de pacientes submetidas à indução da ovulação e fertilização in vitro, foram divididos de forma randômica em três grupos: oócitos a fresco (A), oócitos congelados pela técnica de congelação lenta (B) e oócitos congelados pela técnica de vitrificação (C). Os oócitos a fresco, os descongelados e os aquecidos foram maturados in vitro até estágio de (MII). A análise do fuso meiótico foi realizada por microscópio invertido equipado com uma câmera de vídeo analógica e um sistema de imagens que combina luz polarizada em cristal líquido (ICSI Guard Octax). Resultados: Experimento 1: No tempo 0 e à 37º C, todos os oócitos apresentavam o fuso meiótico visível tanto pela MLP quanto pela IC. À 4º C, o número de oócitos em MI com fuso meiótico visível por meio da MLP foi menor do que com a IC, e descresceu com o tempo, fato que também ocorreu, em menor proporção, com os oócitos em TI. No entanto, a 4º C, o reconhecimento do fuso meiótico dos oócitos em TI foi semelhante tanto para MLP como para IC. Quando os oócitos MII foram expostos à 4º C, a detecção do fuso meiótico teve descréscimo diretamente proporcional ao tempo de cultura quando foi utilizada a MLP, sendo que o mesmo ocorreu para a IC, porém de forma menos pronunciada. À temperatura ambiente houve um pequeno descéscimo na visualização do fuso meiótico tanto por MLP quanto por IC, porém este não foi estatisticamente significativo para os oócitos em TI. Experimento 2: A taxa de sobrevivência imediatamente após o descongelamento/ aquecimento foi de 44,6% para o grupo B e de 79% para o grupo C. Após 24 horas em cultura , estas taxas passaram para 29,2% e 69%, respectivamente. A mediana de tempo para maturação foi de 26 horas para os grupos A e C, e de 27 horas para o grupo B. Ao final da maturação in vitro a porcentagem de oócitos em MII foi menor no grupo B e semelhante nos grupos A e C. Assim como para a detecção do fuso meiótico que foi menor no grupo B e similar nos grupos A e C. Conclusões: Houve diferença na porcentagem de despolimerização do fuso meiótico em resposta à baixa temperatura entre os oócitos de camundongas nos diferentes estágios da divisão meiótica, sendo menor nos oócitos em TI. A porcentagem de despolimerização do fuso meiótico foi diretamente proporcional ao tempo de cultivo, à exceção dos oócitos em TI à temperatura ambiente. Os oócitos hmanos em GV vitrificados apresentaram melhores taxas de sobrevivência quando comparados com oócitos humanos em GV criopreservados pelo congelamento lento. Os oócitos humanos em GV vitrificados apresentaram taxas semelhantes de maturação in vitro e detecção do fuso meiótico polimerizado quando comparados a oócitos a fresco / Introduction: The meiotic spindle of most mammals is sensitive to cooling and depolymerizes even after a slight reduction in temperature. This is well described and studied on matured oocytes at metaphase II (MII). However, little is known about the influence of low temperatures under meiotic spindle of imature oocytes. In this way, we sougth to evaluate: 1) the influence of low temperatures on mice oocyte meiotic spindle matured in vitro e 2) the oocyte meiotic spindle from human oocytes matured in vitro and cryopreserved by slow-rate freezing or vitrification at GV stage. Methods: Two experiments were done: the first one on mice and the second one on women.At experiment 1, immature mice oocytes at metaphase I (MI), telophase I (TI) and MII were cultured at 37º C (control), room temperature (22oC) and 4º C for 0, 10, 30 and 60 minutes and then spindle analysis was made with polarized light microscopy (PLM) (LC-Polscope-Oosight image software) or immunocytochemistry (ICC). At experiment 2, GV oocytes retrieved from women submitted to ovulation induction and in vitro fertilization were randomly divided in three groups: fresh oocytes (A), cryopreserved by slow-freezing (B) and cryopreserved by vitrification (C). Fresh, thawed and warmed oocytes were matured in vitro to metaphase II oocytes (MII). A meiotic spindle analysis was done by polarized light microscopy (ICSI Guard Octax). Results: Experiment 1: At time 0 min and 37º C, all oocytes had polymerized spindles both at PLM or ICC. At 4º C, the number of MI oocytes with detectable spindles at PLM was smaller than those analysed by ICC, and it decreased with time, which had also occured with TI oocytes at a smaller proportion. However, at 4º C, TI meiotic spindle recognition with polarized light microscopy and ICC was comparable. When MII oocytes were cultured at 4º C, the spindle visualization decreased proportionally in correlation with culture time at PLM, and the same happened with ICC in a less pronounced manner. At room temperature there was a little descrease regarding visualization of meiotic spindle, both at PLM and ICC, altought it was not significant for TI oocytes. Experiment 2: Oocyte survival immediately after thawing/warming were 44.6% for group B and 79% for group C. After 24 hours of culture, oocyte survival was 29.2% and 69%, respectively. The median time for maturation was 26 hours for groups A and C, and 27 hours for group B. The percentage of MII after maturation in vitro were smaller in group B and similar between groups A and C. The same oocured for spindle visualization which were lower in group B and similar between groups A and C. Conclusions: There was a difference on the percentages of meiotic spindle depolymerization in response to cooling in mice oocytes at different stages of meiotic division. Spindle depolymerization was lower in TI. Also, meiotic spindle depolimerization was proportional to culture time, except for TI oocytes at room temperature.Vitrified GV oocytes had a better survival when warmed, compared to slow-rate frozen oocytes. Vitrified GV oocytes had similar maturation in vitro rates and polymerized spindles detection when compared to fresh oocytes
10

Optical Studies ofNano-Structures in the Beetle<em>Cetonia Aurata</em><em></em>

Shamim, Rizwana January 2009 (has links)
<p> </p><p> </p><p> </p><p><p>The main</p><p>objective of this thesis is to study the polarization effects of the beetle <em>Cetonia aurata </em>using Mueller-matrix ellipsometry. The outer shell of the beetle consists of complex microstructures which control the polarization of the reflected light. It has metallic appearance which originates from helicoidal structures. When these microstructures are exposed to polarized or unpolarized light, only left-handed circularly polarized light is reflected. Moreover, the exo-skeleton of the beetle absorbs right-handed polarized light. Multichannel Mueller-matrix ellipsometer or dual rotating compensator ellipsometer, called RC2, from J.A.Woollam is used to measure the polarization caused by different parts of beetle’s body. The 16 Mueller matrix elements are measured in the spectral range 400-800 nm at multiple angles of incidencein the range 40<sup>0</sup>-70<sup>0</sup>. An Optical model is developed to help us understand the nature and type of microstructure which only reflects the green colour circularly polarized light. With the help of multiparametric modeling, we were able to find optical properties and structural parameters. The parameters are: the number of layers, the numbers of sub-layers, their thicknesses, and the orientation with respect to optical axes. This optical model describes the nanostructures which provide the reflection properties similar to the nanostructure found in the beetle <em>Cetonia aurata. </em>The model is also useful for analysis of the optical response data of different materials with multilayer structures.</p></p><p> </p>

Page generated in 0.0691 seconds