Spelling suggestions: "subject:"polaron"" "subject:"colaron""
21 |
Optical Absorption and Electrical Conductivity in Lithium Intercalated Amorphous Tungsten Oxide FilmsBerggren, Lars January 2004 (has links)
Optical and electrical properties of electrochemically lithium ion intercalated thin films of x-ray amorphous tungsten oxide made by magnetron sputtering on glass substrates coated with a thin layer of conductive tin doped indium oxide, have been studied. The composition and the density of the films were characterized by the ion beam analysis methods Rutherford Backscattering Spectroscopy and Elastic Recoil Detection Analysis. The optical properties, transmittance and reflectance were investigated by spectophotometry in the wavelength range 300-2500 nm. The absorption coefficients were calculated at different lithium intercalation levels. It was found that the absorption coefficient in an as-deposited blue film has a similar asymmetric shape as for films intercalated to a Li/W ratio of ~0.03. It was possible to electrochemically bleach this film to transparency. Stoichiometric films show optical irreversibility between the bleached and the colored state in the first cycle. A polaron absorption model has been compared to the absorption coefficient for films of different intercalation levels. An increase in the Fermi level and in the polaron band width, and a nearly constant activation energy was found as the Li/W value increased. The radius of the polaron wavefunction for different lithium intercalation levels and film compositions has been estimated from electrical measurements. The total absorption coefficient has been compared to the site-saturation model. The model is good for films intercalated in the optically reversible region. A modified site-saturation model that could be applied also in the optically irreversible region and involves electron transitions between W6+, W5+ and W4+ sites, has also been compared to experimental values. It was found that the total absorption, optical density and the coloration efficiency is higher for the WO2.63 film than in the less oxygen deficient films and that this film is optically more durable in an electrochemically cyclic lifetime device test.
|
22 |
Spin Imbalanced Quasi-Two-Dimensional Fermi GasesOng, Willie Chuin Hong January 2015 (has links)
<p>Spin-imbalanced Fermi gases serve as a testbed for fundamental notions and are efficient table-top emulators of a variety of quantum matter ranging from neutron stars, the quark-gluon plasma, to high critical temperature superconductors. A macroscopic quantum phenomenon which occurs in spin-imbalanced Fermi gases is that of phase separation; in three dimensions, a spin-balanced, fully-paired superfluid core is surrounded by an imbalanced normal-fluid shell, followed by a fully polarized shell. In one-dimension, the behavior is reversed; a balanced phase appears outside a spin-imbalanced core. This thesis details the first density profile measurements and studies on spin-imbalanced quasi-2D Fermi gases, accomplished with high-resolution, rapid sequential spin-imaging. The measured cloud radii and central densities are in disagreement with mean-field Bardeen-Cooper-Schrieffer theory for a 2D system. Data for normal-fluid mixtures are well fit by a simple 2D polaron model of the free energy. Not predicted by the model is an observed phase transition to a spin-balanced central core above a critical polarization.</p> / Dissertation
|
23 |
Numerical study of the crossover from free electrons to small polaronsLi, Zhou Unknown Date
No description available.
|
24 |
Charge Transfer in Deoxyribonucleic Acid (DNA): Static Disorder, Dynamic Fluctuations and Complex Kinetic.Edirisinghe Pathirannehelage, Neranjan S 07 January 2011 (has links)
The fact that loosely bonded DNA bases could tolerate large structural fluctuations, form a dissipative environment for a charge traveling through the DNA. Nonlinear stochastic nature of structural fluctuations facilitates rich charge dynamics in DNA. We study the complex charge dynamics by solving a nonlinear, stochastic, coupled system of differential equations. Charge transfer between donor and acceptor in DNA occurs via different mechanisms depending on the distance between donor and acceptor. It changes from tunneling regime to a polaron assisted hopping regime depending on the donor-acceptor separation. Also we found that charge transport strongly depends on the feasibility of polaron formation. Hence it has complex dependence on temperature and charge-vibrations coupling strength. Mismatched base pairs, such as different conformations of the G・A mispair, cause only minor structural changes in the host DNA molecule, thereby making mispair recognition an arduous task. Electron transport in DNA that depends strongly on the hopping transfer integrals between the nearest base pairs, which in turn are affected by the presence of a mispair, might be an attractive approach in this regard. I report here on our investigations, via the I –V characteristics, of the effect of a mispair on the electrical properties of homogeneous and generic DNA molecules. The I –V characteristics of DNA were studied numerically within the double-stranded tight-binding model. The parameters of the tight-binding model, such as the transfer integrals and on-site energies, are determined from first-principles calculations. The changes in electrical current through the DNA chain due to the presence of a mispair depend on the conformation of the G・A mispair and are appreciable for DNA consisting of up to 90 base pairs. For homogeneous DNA sequences the current through DNA is suppressed and the strongest suppression is realized for the G(anti)・A(syn) conformation of the G・A mispair. For inhomogeneous (generic) DNA molecules, the mispair result can be either suppression or an enhancement of the current, depending on the type of mispairs and actual DNA sequence.
|
25 |
Electron phonon interaction in strongly correlated materialsRösch, Oliver, January 2005 (has links)
Stuttgart, Univ., Diss., 2005.
|
26 |
Síntese e caracterização de polipirrol (PPy) obtido pelo processo químico convencional e microemulsão /Santim, Ricardo Hidalgo. January 2011 (has links)
Orientador: Hermes Adolfo de Aquino / Banca: José Antônio Malmonge / Banca: Rinaldo Gregório Filho / Resumo: Os polímeros são muito conhecidos por serem materiais de fácil processamento, leveza, isolantes elétricos e até mesmo térmicos. Essas propriedades viabilizaram várias aplicações tecnológicas desde utensílios domésticos à indústria. No fim do século passado as pesquisas voltaram-se em busca de energias renováveis e novos materiais que associassem as vantagens dos polímeros com as propriedades elétricas dos metais. Com essas pesquisas surgiu uma nova classe de polímeros chamada de Polímeros Condutores Intrínsecos (PCIs) que dispõem de boas propriedades de condução elétrica inerente ao material. Esses PCIs podem ser sintetizados em forma de fibras ou filmes, sozinhos ou com vários outros polímeros para formar blendas com diferentes propriedades. O polipirrol (PPy) é um PCI que proporciona altas condutividades elétricas e boa estabilidade oxidativa, algo difícil de se conseguir com essa classe de polímeros. Esse trabalho teve como objetivo sintetizar amostras de PPy por dois métodos de síntese química: convencional (em solução aquosa) e microemulsão com dodecil sulfato de sódio (SDS - surfactante e dopante). No primeiro método foi variada a razão molar de monômero/oxidante e no segundo variou-se as razões molares de monômero/oxidante/dopante. Para o estudo dessas amostras foram realizadas análises estruturais, morfológicas, térmicas, ópticas e elétricas. De maneira geral, as amostras que apresentaram melhores características morfológicas, ópticas e de condutividade elétrica, foram as obtidas no processo químico em microemulsão, de tal maneira que, quanto maior a quantidade de SDS e menor a temperatura, menor foi o tamanho das partículas de PPy, maior a conjugação das cadeias e maior a dopagem com SDS. / Abstract: The polymers are known to be materials easy processed, slight, electrical insulators and even heat. These properties made possible many technological applications, from household items to the industry. At the end of last century the polls turned in search of renewable energy and new materials that combines the benefits of polymers with the electrical properties of metals. With these studies emerged a new class of polymers called Intrinsic Conducting Polymers (PICs) that have good electrical conduction properties inherent to the material. These PICs can be synthesized in the form of fibers or films, either alone or with various other polymers to form blends with different properties. The polypyrrole (PPy) is a PIC that provides high electrical conductivity and good oxidative stability, something difficult to achieve with this class of polymers. This study aimed to synthesize PPy samples by two methods of chemical synthesis: conventional (aqueous solution) and microemulsion SDS (dodecilsulfate of sodium - surfactant and dopant). In the first method was varied the molar ratio of monomer/oxidant and the second was varied molar ratios of monomer/oxidant/dopant. For the study of these samples were performed structural analyses, morphological, thermal, optical and electrical. In general, samples that showed better morphological characteristics, optical and electrical conductivity were obtained in the chemical process of microemulsion, such a way that the larger the amount of SDS and the lower the temperature, the smaller the particle size of PPy, the greater the conjugation of chains and the higher the doping with SDS. / Mestre
|
27 |
The study of magnetic and polaronic microstructure in Pr1-xCaxMnO3 manganite seriesRajpurohit, Sangeeta 16 July 2018 (has links)
No description available.
|
28 |
Structure and photovoltaic properties of strongly correlated manganite/titanite heterojunctionsIfland, Benedikt 17 May 2018 (has links)
No description available.
|
29 |
A Theoretical Study of Charge Transport in Molecular CrystalsMozafari, Elham January 2013 (has links)
The main objective of this thesis is to provide a deeper understanding of the charge transport phenomena occuring in molecular crystals. The focus is on the stability and the dynamics of the polaron as the charge carrier. To achieve this goal, a series of numerical calculations are performed using the semi-emprical "Holstien-Peierls" model. The model considers both intra- (Holstein) and inter- (Peierls) molecular interactions, in particular the electron-phonon interactions. First, the stability of the polaron in an ordered two dimensional molecular lattice with an excess charge is studied using Resilient backPropagation, RPROP, algorithm. The stability is defined by the "polaron formation energy". This formation energy is obtained for a wide range of parameter sets including both intra- and inter-molecular electron-phonon coupling strengths and their vibrational frequencies, transfer intergral and electric field. We found that the polaron formation energies lying in the range of 50-100 meV are more interesting for our studies. The second step to cover is the dynamical behaviour of the polaron. Using the stable polaron solutions acheived in the first step, an electric field is applied as an external force, pushing the charge to move. We observed that the polaron remains stable and moves with a constant velocity for only a limited range of parameter sets. Finally, the impact of disorder and temperature on the charge dynamics is considered. Adding disorder to the system will result in a more restricted parameter set space for which the polaron is dynamically stable and mobile. Temperature is included in the Newtonian equations of motion via a random force. We observed that the polaron remains localized and moves with a diffusive behaviour up to a certain temperature. If the temperature increases to values above this critical temperature, the localized polaron becomes delocalized. All this research work is coded in MATLAB software , allowing us to run the calculations, test and validate our results.
|
30 |
OPTICAL IMAGING OF EXCITON MAGNETIC POLARONS IN DILUTED MAGNETIC SEMICONDUCTOR QUANTUM DOTSGURUNG, TAK BAHADUR 02 October 2006 (has links)
No description available.
|
Page generated in 0.2005 seconds