• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 7
  • 6
  • 5
  • 2
  • 2
  • 1
  • Tagged with
  • 52
  • 16
  • 15
  • 14
  • 14
  • 14
  • 14
  • 14
  • 13
  • 13
  • 13
  • 11
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Etude du verre d'oxydes LBG : des propriétés optiques non linéaires au comportement sous haute pression

Coussa-Simon, Camille 12 September 2008 (has links) (PDF)
La possibilité d'induire une susceptibilité non-linéaire d'ordre deux dans les verres a été démontrée en 1991 sur des verres de silice, par la méthode du poling thermique. La susceptibilité créée reste cependant peu élevée. Dans le cadre de cette thèse, notre intérêt s'est porté sur un verre à base d'oxydes de lanthane, bore et germanium (LBG), dont les propriétés optiques laissaient entrevoir de grandes possibilités. Des dispositifs expérimentaux ont été développés au cours de ce travail afin de créer et de caractériser l'anisotropie induite dans le verre LBG par poling thermique. Les effets d'irradiation laser UV nano-secondes en vue de l'inscription de guides d'onde sont également étudiés. La possibilité de changer localement l'indice de réfraction et la structure du verre nous a conduit à étudier pour la première fois le comportement de ce verre sous pression. Le verre comprimé en cellule à enclumes diamant est étudié in situ par spectroscopies Raman et d'absorption des rayons X (XAS). Nous mettons à jour un comportement singulier de ce verre sous pression par diffusion Raman : des cycles d'hystérésis ouverts ou fermés, peuvent être décrits et montrent une évolution non monotone d'une bande Raman en fonction de la pression. Les mesures XAS confirment un changement de coordinence partiellement irreversible du germa- nium. Si la pression appliquée est suffisamment élevée, les changements structuraux induits sont permanents et stables à pression atmosphérique.
32

Fabrication and characterization of periodically poled KTB and RB-doped KTB for applications in the visible and UV

Wang, Shunhua January 2005 (has links)
This thesis deals with the fabrication and the characterization of periodically-poled crystals for use in lasers to generate visible and UV radiation by second-harmonic generation (SHG) through quasi-phasematching (QPM). Such lasers are of practical importance in many applications like high-density optical storage, biomedical instrumentation, colour printing, and for laser displays. The main goals of this work were: (1) to develop effective monitoring methods for poling of crystals from the KTiOPO4 (KTP) family, (2) to develop useful non-destructive domain characterization techniques, (3) to try to find alternative crystals to KTP for easier, periodic poling, (4) to investigate the physical mechanisms responsible for optical damage in KTP. The work shows that the in-situ SHG technique used together with electro-optic monitoring, makes it possible to obtain reliable, real-time information regarding the poling quality over the whole crystal aperture during the electric-field poling process. Using this combined monitoring method, both KTP and Rb-doped KTP (RKTP) crystals were successfully poled. By comparing these two crystals, we found that a low-doped KTP has a substantially reduced ionic conductivity and, thus, a high-quality periodic poling can be obtained without otherwise affecting the properties of the crystal. RKTP is a good alternative candidate to KTP for poling purpose. We have also shown that Atomic Force Microscopy (AFM) is an informative tool for investigating domain nucleation, growth, and merging. Furthermore, we have demonstrated a simple technique for 3D characterization of QPM samples. It utilizes a group-velocity mismatched, type-II SHG of femtosecond pulses for layer-by-layer monitoring of the effective nonlinearity along the propagation direction of the beam. The quality of these crystals was finally reflected in a number of SHG experiments with a variety of laser sources. High energies and high efficiencies were thus demonstrated using CW, mode-locked and Q-switched lasers. Gratings with pitches smaller than 3 µm, were demonstrated for first-order UV generation. Type-II QPM SHG was demonstrated as a technique for reducing the fabrication constraints. High intensity light in the visible and the UV leads to modification of the material properties and, eventually, to optical damage. In KTP and its isomorphs, the first sign of material change is an optically-induced absorption. We have used thermal-lens spectroscopy with a common-path interferometer for high-sensitivity measurements of green light-induced infrared absorption dynamics in single-domain and periodically-poled KTP (PPKTP). The saturated, green light-induced absorption has been shown to be consistently higher in periodically-poled crystals, and is attributed to the creation of stoichiometric and interstitial defects in the crystals during the poling process. Finally, irreversible bulk damage thresholds in PPKTP have been determined for pulsed frequency converters. As the characteristics of optical damage are closely related to the material quality, this investigation can provide useful information for crystal manufactures and will help to optimise the crystal growth conditions.
33

Nanosecond optical parametric oscillators and amplifiers based on periodically poled KTiOPO4

Hellström, Jonas January 2001 (has links)
Optical parametric oscillators (OPOs) and optical parametricamplifiers (OPAs) constitute a class of optical frequencyconverting devices that have many possible applications, e.g.in range finding, molecular spectroscopy and medicine. They canconvert the frequency of the incident pump field with highefficiency, and generate two waves at new frequencies that willbe continuously tuneable over a wide spectral range. Virtuallyany wavelengths within the transparency region of the nonlinearmaterial can be generated if the material can bequasi-phasematched (QPM). In addition, QPM gives thepossibility to utilise the largest nonlinear tensor element ofthe material and allows walk-off free interaction between thewaves. The aims of this thesis have been to investigate thepossibility to use QPM KTiOPO4crystals as nonlinear material in nanosecond OPOsand OPAs operating at room-temperature, and to explore theadvantages and shortcomings of these devices. The technique ofelectric field poling has been employed to implement the QPMstructure in flux grown KTiOPO4(KTP). The main conclusion is that periodically poled KTP (PPKTP)is a suitable material to use in nanosecond OPOs and OPAs. Thematerial properties that foremost make KTP into an attractivenonlinear material are: The large value of the nonlinearcoefficient d33, the high resistance to optically inducedbreakdown, the low susceptibility to grey-track formation, theinsensitivity to the photorefractive effect, the widetransparency and the low coercive field. The thesis shows that it is possible to pole large volumesof KTP with a high quality of the QPM structure. Highlyefficient nanosecond OPOs have been constructed during thisproject. Maximum conversion efficiencies have reached 45 % inthe case of a singly resonant OPO (SRO) built around a 3 mmthick PPKTP crystal. Total pulse energies for both the signal(1.72 µm) and the idler (2.8 µm) of up to 18 mJ wasreached and an average output power of 2 W was obtained forthis sample. However, up to 24 W was produced in a doublyresonant OPO operating close to degeneracy. The efficiencyreached 48 % for that case. Truly continuous and very widespectral tuning has also been demonstrated, as well as a narrowbandwidth OPO operating on one single longitudinal mode. <b>Keywords:</b>optical parametric oscillators, opticalparametric amplifiers, quasi-phasematching, KTiOPO4, nonlinear optics, frequency conversion, periodicelectric field poling, ferroelectrics, high-order secondharmonic generation, electro-optic effect.
34

Domain engineering in KTiOPO4

Canalias, Carlota January 2005 (has links)
Ferroelectric crystals are commonly used in nonlinear optics for frequency conversion of laser radiation. The quasi-phase matching (QPM) approach uses a periodically modulated nonlinearity that can be achieved by periodically inverting domains in ferroelectric crystals and allows versatile and efficient frequency conversion in the whole transparency region of the material. KTiOPO4 (KTP) is one of the most attractive ferroelectric non-linear optical material for periodic domain-inversion engineering due to its excellent non-linearity, high resistance for photorefractive damage, and its relatively low coercive field. A periodic structure of reversed domains can be created in the crystal by lithographic patterning with subsequent electric field poling. The performance of the periodically poled KTP crystals (PPKTP) as frequency converters rely directly upon the poling quality. Therefore, characterization methods that lead to a deeper understanding of the polarization switching process are of utmost importance. In this work, several techniques have been used and developed to study domain structure in KTP, both in-situ and ex-situ. The results obtained have been utilized to characterize different aspects of the polarization switching processes in KTP, both for patterned and unpatterned samples. It has also been demonstrated that it is possible to fabricate sub-micrometer (sub-μm) PPKTP for novel optical devices. Lithographic processes based on e-beam lithography and deep UV-laser lithography have been developed and proven useful to pattern sub- μm pitches, where the later has been the most convenient method. A poling method based on a periodical modulation of the K-stoichiometry has been developed, and it has resulted in a sub-μm domain grating with a period of 720 nm for a 1 mm thick KTP crystal. To the best of our knowledge, this is the largest domain aspect-ratio achieved for a bulk ferroelectric crystal. The sub-micrometer PPKTP samples have been used for demonstration of 6:th and 7:th QPM order backward second-harmonic generation with continuous wave laser excitation, as well as a demonstration of narrow wavelength electrically-adjustable Bragg reflectivity. / QC 20100930
35

Investigations of Strongly Charge Transfer Molecules Using Nonlinear Optical Scattering and Absorption

Tai, Yung-hui 19 January 2005 (has links)
This thesis provides an extensive study of the first molecular hyperpolarizability b of charge-transfer chromophores using hyper-Rayleigh scattering (HRS). The charge-transfer chromophores used in present work involve the tricyanohydrofuran¡]TCF¡^group as an electron acceptor, and/or thiophene in the pi-electron bridge. TCF is a very strong electron acceptor and thiophene greatly lowers the resonance energy. Their presence significantly increases the beta value of the chromophore, therefore enhancing potentials in applications. In hyper-Rayleigh scattering experiments, the laser radiation with tunable wavelengths is used as an excitation source for measuring the frequency dependence of beta. The experiment shows beta exhibiting a significant dispersion in the two-photon resonance region. Using the linear absorption spectrum in coordination with theory, we show that it is possible to use Kramers-Kronig (K-K) transform to reproduce the experimental beta value in the two-photon resonance region. The K-K approach provides an extension to the conventional Oudar-Chemla equation, which is invalid in the spectral region in which two-photon resonance occurs. Using the new approach, it is shown that reliable values of intrinsic hyperpolarizabilities beta_zero of charge-transfer chromophores can be extracted. The coordination of beta_zero with molecular structure provides one with an insight for the origin of the enhancement of the first molecular hyperpolarizability of charge-transfer chromophores. This thesis examines the variation of beta_zero with molecular structure. The same technique is also applied to a dendrimer that has charge-transfer nonlinear optical chromophores incorporated in the dendritic structure. The measured frequency dependent hyperpolarizability of the dendrimer is compared with that calculated from the linear absorption spectrum by the KK transform technique. The intrinsic hyperpolarizability beta_zero of the dendrimer obtained is compared with that of the single chromophore having a structure similar to that incorporated in the dendrimer. The comparison shows that the 3D dendritic structure is effective in reducing the interaction between chromophores by providing sufficient space between them, hence avoiding the possibility of aggregation formation due to attractive interactions between chromophores. The topic of two-photon fluorescence (TPF), which is related to HRS, is also investigated. The intensity of TPF is generally proportional to the square of the incident excitation intensity. Careful measurements of the TPF intensity of a nonlinear optical chromophore in conjunction with required auxiliary parameters have been used as a technique for determining the two-photon absorption cross-section. The TPF intensity measurement carried out in this thesis uses a variety of intensities. At low intensity excitation, the TPF intensity follows the usual quadratic intensity law (QIL), whereas deviations from the QIL are observed at higher incident intensities. The observation of similar lineshape associated with one- and two-photon fluorescence spectra suggests a 3-level model for the description of TPF excited by the incident intensity at various strengths. It is shown that by fitting the observed TPF intensity to an equation developed from the three-level model, it is possible to deduce the two-photon absorption cross section of the nonlinear optical chromophore in solution. The new technique developed using the three-level model is tested on a Rhodamine B/Chloroform solution. The two-photon absorption cross-section obtained by using the new technique is found in agreement with that reported in the literature. Having demonstrated the suitability of the new technique, it is used to determine the two-photon absorption cross-section of a novel nonlinear optical chromophore. The two-photon absorption cross-section using the new technique is then compared with that obtained by the nonlinear transmittance method. The two results are in good agreement, indicating the applicability of the new technique. The new technique is more convenient than the conventional low excitation TPF method as it does not require various auxiliary parameters, some of them are difficult to obtain. The second harmonic generation (SHG) of a chromophore/polymer film which is optically poled by using a coherent superposition of a fundamental and its second harmonic beams. The growth rate of the SHG intensity is found to be proportional to the fourth power of the incident intensity of the fundamental beam, and the plateau intensity SHG is proportional to the square of the incident intensity. These observations are not in agreement with the published theory. While the reason for disagreement is yet to be clarified, the information obtained is useful for the development of nonlinear optical devices.
36

Nanosecond optical parametric oscillators and amplifiers based on periodically poled KTiOPO4

Hellström, Jonas January 2001 (has links)
<p>Optical parametric oscillators (OPOs) and optical parametricamplifiers (OPAs) constitute a class of optical frequencyconverting devices that have many possible applications, e.g.in range finding, molecular spectroscopy and medicine. They canconvert the frequency of the incident pump field with highefficiency, and generate two waves at new frequencies that willbe continuously tuneable over a wide spectral range. Virtuallyany wavelengths within the transparency region of the nonlinearmaterial can be generated if the material can bequasi-phasematched (QPM). In addition, QPM gives thepossibility to utilise the largest nonlinear tensor element ofthe material and allows walk-off free interaction between thewaves.</p><p>The aims of this thesis have been to investigate thepossibility to use QPM KTiOPO<sub>4</sub>crystals as nonlinear material in nanosecond OPOsand OPAs operating at room-temperature, and to explore theadvantages and shortcomings of these devices. The technique ofelectric field poling has been employed to implement the QPMstructure in flux grown KTiOPO<sub>4</sub>(KTP).</p><p>The main conclusion is that periodically poled KTP (PPKTP)is a suitable material to use in nanosecond OPOs and OPAs. Thematerial properties that foremost make KTP into an attractivenonlinear material are: The large value of the nonlinearcoefficient d<sub>33</sub>, the high resistance to optically inducedbreakdown, the low susceptibility to grey-track formation, theinsensitivity to the photorefractive effect, the widetransparency and the low coercive field.</p><p>The thesis shows that it is possible to pole large volumesof KTP with a high quality of the QPM structure. Highlyefficient nanosecond OPOs have been constructed during thisproject. Maximum conversion efficiencies have reached 45 % inthe case of a singly resonant OPO (SRO) built around a 3 mmthick PPKTP crystal. Total pulse energies for both the signal(1.72 µm) and the idler (2.8 µm) of up to 18 mJ wasreached and an average output power of 2 W was obtained forthis sample. However, up to 24 W was produced in a doublyresonant OPO operating close to degeneracy. The efficiencyreached 48 % for that case. Truly continuous and very widespectral tuning has also been demonstrated, as well as a narrowbandwidth OPO operating on one single longitudinal mode.</p><p><b>Keywords:</b>optical parametric oscillators, opticalparametric amplifiers, quasi-phasematching, KTiOPO<sub>4</sub>, nonlinear optics, frequency conversion, periodicelectric field poling, ferroelectrics, high-order secondharmonic generation, electro-optic effect.</p>
37

Fabrication and characterization of periodically poled KTB and RB-doped KTB for applications in the visible and UV

Wang, Shunhua January 2005 (has links)
<p>This thesis deals with the fabrication and the characterization of periodically-poled crystals for use in lasers to generate visible and UV radiation by second-harmonic generation (SHG) through quasi-phasematching (QPM). Such lasers are of practical importance in many applications like high-density optical storage, biomedical instrumentation, colour printing, and for laser displays.</p><p>The main goals of this work were: (1) to develop effective monitoring methods for poling of crystals from the KTiOPO<sub>4</sub> (KTP) family, (2) to develop useful non-destructive domain characterization techniques, (3) to try to find alternative crystals to KTP for easier, periodic poling, (4) to investigate the physical mechanisms responsible for optical damage in KTP. The work shows that the in-situ SHG technique used together with electro-optic monitoring, makes it possible to obtain reliable, real-time information regarding the poling quality over the whole crystal aperture during the electric-field poling process. Using this combined monitoring method, both KTP and Rb-doped KTP (RKTP) crystals were successfully poled. By comparing these two crystals, we found that a low-doped KTP has a substantially reduced ionic conductivity and, thus, a high-quality periodic poling can be obtained without otherwise affecting the properties of the crystal. RKTP is a good alternative candidate to KTP for poling purpose. We have also shown that Atomic Force Microscopy (AFM) is an informative tool for investigating domain nucleation, growth, and merging. Furthermore, we have demonstrated a simple technique for 3D characterization of QPM samples. It utilizes a group-velocity mismatched, type-II SHG of femtosecond pulses for layer-by-layer monitoring of the effective nonlinearity along the propagation direction of the beam. The quality of these crystals was finally reflected in a number of SHG experiments with a variety of laser sources. High energies and high efficiencies were thus demonstrated using CW, mode-locked and Q-switched lasers. Gratings with pitches smaller than 3 µm, were demonstrated for first-order UV generation. Type-II QPM SHG was demonstrated as a technique for reducing the fabrication constraints.</p><p>High intensity light in the visible and the UV leads to modification of the material properties and, eventually, to optical damage. In KTP and its isomorphs, the first sign of material change is an optically-induced absorption. We have used thermal-lens spectroscopy with a common-path interferometer for high-sensitivity measurements of green light-induced infrared absorption dynamics in single-domain and periodically-poled KTP (PPKTP). The saturated, green light-induced absorption has been shown to be consistently higher in periodically-poled crystals, and is attributed to the creation of stoichiometric and interstitial defects in the crystals during the poling process. Finally, irreversible bulk damage thresholds in PPKTP have been determined for pulsed frequency converters. As the characteristics of optical damage are closely related to the material quality, this investigation can provide useful information for crystal manufactures and will help to optimise the crystal growth conditions.</p>
38

Diagnostique de polymères et de matériaux électroniques par génération de second harmonique

Chan, Siu-Wai 16 March 2007 (has links) (PDF)
La stabilité optique nonlinéaire du colorant (Disperse red 1) dopé dans différent polymères amorphes préparés par spin-coating ou incorporé dans un polymère préparé par le processus auto-assemblé Layer-by-Layer (LBL) a été étudiée. La relaxation de rotation du colorant est analysée en mesurant la variation de susceptibilité de second ordre induite par le poling tout-optique. Nous montrons que la température de transition vitreuse du polymère n'est pas le seul facteur qui influe sur la stabilité de rotation libre du colorant. Par contre, l'architecture de polymère (la polarité de la chaîne polymère) joue un rôle sur la stabilité de rotation. Nous discutons du ralentissement de la relaxation de rotation moléculaire sur le poling tout-optique. Un modèle ‘restoring torque' est introduit pour étudier la stabilité d'orientation intrinsèque du colorant dans polymère préparé par le processus auto-assemblé Layer-by-Layer.<br /><br />La propriété optique nonlinéaire de second ordre d'oxyde de zinc est étudiée a l'échelle de millimètre jusqu'à nano-mètre. L'effet de surface sur l'augmentation de réponse de la génération de second harmonique est montré. Nous suggérons que la génération de second harmonique induite par le champ électrique crée par la séparation des charges est l'origine de l'augmentation proéminent des susceptibilités à second ordre. <br /><br />Nous discutons la réponse significative d'optique nonlinéaire de second ordre de fullerène (C60) et phthalocyanine de cuivre (CuPc) qui sont de nature centro-symétrique. L'influence d'épaisseur de couche et le substrat nous montre l'origine de la génération de second harmonique : la génération de second harmonique induite par le champ électrique de la séparation de charge à l'interface du substrat et de la couche. Elle n'est pas causée par des mécanismes d'optique nonlinéaire aux ordres plus élevés. En plus, la technique ‘Kelvin Probe' est introduite pour analyser quantitativement le transfert de charge à l'interface.
39

Poled fiber devices

Myrén, Niklas January 2005 (has links)
The topic of this thesis is the development of devices for telecom applications based on poled optical fibers. The focus is on a specific function, optical switching/modulation. Some of the most important results are summarized below. Optical switching at telecom wavelengths (1.55 μm) is demonstrated in an all-fiber switch based on a fiber with internal electrodes. The fiber is made electro-optically active with a thermal poling process in which a strong electric field is recorded in the glass at a temperature of 255 °C. After poling, the fiber is put in one arm of a Mach-Zehnder interferometer and by applying a voltage across the two electrodes the refractive index is modulated and the optical signal switched from one output port to the other. A switching voltage of 190 V at 1550 nm was achieved, which to the best of our knowledge is the lowest value reported. By carefully matching the lengths of the fibers in the two arms of the interferometer the optical bandwidth could be made as large as 20 nm. The extinction ratio, determined by the power ratio in the two arms, was 30 dB and the highest modulation frequency was 30 MHz. Poled fibers were packaged to increase the thermal and mechanical stability and to make handling easier. 40 Gb/s transmission test through the device showed no bit-error-rate performance degradation. Protection switching of a 10 Gb/s signal is also demonstrated. The depletion region in a poled fiber was found to be wedge-shaped and very wide, 13 μm and completely overlapped with the core. In a time-resolved poling experiment the recorded electric field was measured. The sign of the field changed after ~20 min, when the depletion region passed through the core, which led to the conclusion that an electric field is present also outside of the depletion region. A ring laser was constructed with an erbium doped fiber as the gain medium. A fiber modulator was placed inside the cavity and when a small RF signal, with a frequency matched to the cavity ground frequency, was applied to the modulator the laser was modelocked. The output pulse train contained pulses of sub ns duration and is the first demonstration of mode-locking using poled fibers. A sampled grating with 16 channels spaced by 50 GHz was inserted into the cavity. The fiber modulator had optical bandwidth of 7 nm with center wavelength that depends on the applied voltage. By applying of 10 – 210 V to the modulator it was possible to tune the laser to 11 of the 16 channels for a total tuning range of over 4 nm. A scheme to deposit 1 μm thin silver electrodes inside the holes of an optical fiber is demonstrated together with a new method of creating periodic electrodes by periodically ablating the silver film electrodes. The periodic electrodes are used to create a quasi-phase matched (QPM) nonlinearity in a fibers which is showed in a proof of principle experiment. / QC 20101015
40

Ferroelectric domain engineering and characterization for photonic applications

Grilli, Simonetta January 2006 (has links)
Lithium niobate (LiNbO3) and KTiOPO4 (KTP) are ferroelectric crystals of considerable interest in different fields of optics and optoelectronics. Due to its large values of the nonlinear optical, electro-optic (EO), piezoelectric and acousto-optical coefficients, LiNbO3 is widely used for laser frequency conversion using the quasiphase matching (QPM) approach where the sign of nonlinearity has been periodically modulated by electric field poling (EFP). In the microwave and telecommunication field LiNbO3 is used for surface acoustic devices and integrated optical modulators. KTP and its isomorphs, on the other hand, exhibit slightly lower nonlinear coefficients but have much higher photorefractive damage thresholds, so that it is mainly used in the fabrication of QPM devices for both UV, IR and visible light generation and in high power applications. This thesis focus on different key issues: (1) accurate characterization of specific optical properties of LiNbO3, which are of interest in nonlinear and EO applications; (2) in-situ visualization and characterization of domain reversal by EFP in LiNbO3 and KTP crystals for a through understanding of the ferroelectric domain switching; (3) fabrication of periodic surface structures at sub-micron scale in LiNbO for photonic applications. An interferometric method is used for accurate measurement of ordinary and extraordinary refractive indices in uniaxial crystals, which is of great interest in the proper design of QPM crystals. A digital holography (DH) based method is presented here for 2D characterization of the EO properties of LiNbO , which is considerably interesting in the applications where the proper design of the EO device requires a spatially resolved information about the EO behaviour and the existing pointwise techniques are not sufficient. A DH method for novel in-situ monitoring of domain reversal by EFP in both LiNbO3 and KTP, is also presented here. The technqiue could be used as a tool for high fidelity periodic domain engineering but also provides information about domain kinetics, internal field and crystals defects. 3 3 3 Finally this thesis presents novel results concerning nanoscale periodic surface structuring of congruent LiNbO3. Holographic lithography (HL) is used for sub-micron period resist patterning and electric overpoling for surface domain reversal. Surface structures are obtained by selective etching. Moiré effect is also used in the HL to fabricate complicated structures with multiple periods. The depth compatibility with waveguide implementation allows foreseeing possible applications of these structures for Bragg gratings or innovative photonic crystal devices, exploiting the additional nonlinear and EO properties typical of LiNbO3. / QC 20100824

Page generated in 0.0532 seconds