• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 104
  • 14
  • 1
  • Tagged with
  • 108
  • 108
  • 108
  • 108
  • 56
  • 40
  • 32
  • 22
  • 21
  • 21
  • 14
  • 12
  • 12
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Isolation, characterization and exploitation of soil micro-organisms for bioremediation of benzo(a)pyrene contamination.

January 2005 (has links)
by Ho, Kai-Man. / Thesis submitted in: December 2004. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 158-179). / Abstracts in English and Chinese. / Acknowledgements --- p.i / Abstracts --- p.ii / Contents --- p.vii / List of figures --- p.xiv / List of tables --- p.xvii / Abbreviations --- p.xx / Chapter 1. --- Introduction --- p.1 / Chapter 1.1 --- Poly cyclic Aromatic Hydrocarbons (PAHs) / Chapter 1.1.1 --- Characteristics of PAHs --- p.1 / Chapter 1.1.2 --- Sources of PAHs --- p.3 / Chapter 1.1.3 --- Environmental fates of PAHs --- p.5 / Chapter 1.1.4 --- Effects of PAHs on living organisms --- p.7 / Chapter 1.1.5 --- Summary --- p.10 / Chapter 1.2 --- Target PAH: Benzo[a]pyrene (BaP) --- p.10 / Chapter 1.3 --- PAH contamination in Hong Kong --- p.14 / Chapter 1.4 --- Remediation for PAHs contaminated soils --- p.15 / Chapter 1.4.1 --- Chemical/ Physical methods --- p.15 / Chapter 1.4.2 --- Bioremediation --- p.16 / Chapter 1.5 --- Biodegradation of PAHs by bacteria and fungi --- p.18 / Chapter 1.5.1 --- Tolerance and degradation --- p.18 / Chapter 1.5.2 --- Biodegradation of PAHs by microorganisms --- p.20 / Chapter 1.5.2.1 --- Bacteria --- p.22 / Chapter 1.5.2.2 --- Fungi --- p.23 / Chapter 1.6 --- Environmental standards --- p.26 / Chapter 1.7 --- Strategies of soil sampling and microbial isolation --- p.26 / Chapter 1.7.1 --- Contaminated soil vs. uncontaminated soil --- p.26 / Chapter 1.7.2 --- Native species vs. foreign species --- p.29 / Chapter 1.7.3 --- Background of the sampling areas --- p.30 / Chapter 1.7.3.1 --- North Tsing Yi shipyard --- p.30 / Chapter 1.7.3.2 --- "Tsam Chuk Wan, Sai Kung" --- p.33 / Chapter 1.8 --- Objectives of this study --- p.33 / Chapter 2. --- Materials and Methods --- p.35 / Chapter 2.1 --- Soil Collection --- p.35 / Chapter 2.1.1 --- Abandoned shipyard soil and its sediment soil --- p.35 / Chapter 2.1.2 --- "Tsam Chuk Wan, Sai Kung" --- p.35 / Chapter 2.2 --- Characterization of soils --- p.35 / Chapter 2.2.1 --- Sample preparation --- p.36 / Chapter 2.2.2 --- Soil pH --- p.36 / Chapter 2.2.3 --- Electrical conductivity --- p.36 / Chapter 2.2.4 --- Salinity --- p.36 / Chapter 2.2.5 --- Total organic carbon contents --- p.38 / Chapter 2.2.6 --- Metal analys --- p.is / Chapter 2.2.7. --- Oil and grease content --- p.38 / Chapter 2.2.8 --- Soil texture --- p.39 / Chapter 2.2.9 --- Available ammoniacal nitrogen and oxidized nitrogen --- p.39 / Chapter 2.2.10 --- Available Phosporus --- p.40 / Chapter 2.2.11 --- Total Nitrogen and total Phosporus --- p.40 / Chapter 2.2.12 --- Moisture / Chapter 2.2.13 --- DTPA-extractable metals --- p.41 / Chapter 2.2.14 --- Extraction of PAHs and organic pollutants --- p.41 / Chapter 2.2.14.1 --- Extraction procedures --- p.41 / Chapter 2.2.14.2 --- GC-MSD conditions --- p.41 / Chapter 2.2.14.3 --- Extraction efficiency --- p.43 / Chapter 2.2.15 --- Soil colour --- p.43 / Chapter 2.3 --- Screening and selection of microorganismms --- p.43 / Chapter 2.3.1 --- Isolation of potential BaP-degrading microorganisms --- p.44 / Chapter 2.3.1.1 --- Isolation of bacteria --- p.44 / Chapter 2.3.1.2 --- Isolation of fungi --- p.44 / Chapter 2.3.2 --- Cultures preserving microorganisms --- p.46 / Chapter 2.3.3 --- Screening and selection of microbes --- p.46 / Chapter 2.3.3.1 --- Bacteria --- p.46 / Chapter 2.3.3.2 --- Fungi --- p.46 / Chapter 2.3.4 --- Survival test --- p.47 / Chapter 2.3.5 --- Removal efficiency (RE) towards BaP by the microorganisms --- p.47 / Chapter 2.3.5.1 --- Bacteria --- p.47 / Chapter 2.3.5.2 --- Fungi --- p.48 / Chapter 2.3.6 --- Removal efficiency (RE) --- p.48 / Chapter 2.3.7 --- Relationship of absorbance of bacterial culture and bacterial biomass --- p.49 / Chapter 2.4 --- Identification of selected microorganisms --- p.49 / Chapter 2.4.1 --- Identification of bacterium --- p.49 / Chapter 2.4.1.1 --- 16S rDNA sequencing --- p.49 / Chapter 2.4.1.1.1 --- Primers --- p.49 / Chapter 2.4.1.1.2 --- DNA extraction --- p.51 / Chapter 2.4.1.1.3 --- Specific PCR --- p.51 / Chapter 2.4.1.1.4 --- Gel electrophoresis --- p.51 / Chapter 2.4.1.1.5 --- Purification of PCR products --- p.52 / Chapter 2.4.1.1.6 --- DNA sequencing --- p.52 / Chapter 2.4.1.2 --- Midi Sherlock® Microbial Identification System (MIDI) --- p.53 / Chapter 2.4.1.3 --- Biolog MicroLog´ёØ system (Biolog) --- p.55 / Chapter 2.4.2 --- Identification of fungi --- p.56 / Chapter 2.4.2.1 --- ITS DNA sequencing --- p.56 / Chapter 2.4.2.2 --- Observation under electronic microscope --- p.58 / Chapter 2.5 --- Growth curve of the microorganism --- p.58 / Chapter 2.5.1 --- Bacterium --- p.58 / Chapter 2.5.2 --- Fungi --- p.58 / Chapter 2.6 --- Preparation of Benzo[a]pyrene (BaP) stock solution --- p.58 / Chapter 2.7 --- Comparison of isolated bacterium and fungi --- p.60 / Chapter 2.8 --- Optimization of BaP degradation by selected fungus --- p.60 / Chapter 2.8.1 --- Preparation of straw compost inoculated with selected fungus --- p.60 / Chapter 2.8.2 --- Effect of incubation time --- p.61 / Chapter 2.8.3 --- Effect of initial BaP concentration --- p.61 / Chapter 2.8.4 --- Effect of inoculum size / Chapter 2.8.5 --- Effect of temperature --- p.61 / Chapter 2.8.6 --- Effect of soil pH --- p.62 / Chapter 2.8.7 --- Study of BaP degradation pathway by the microorganisms using GC-MSD --- p.62 / Chapter 2.9 --- Chitin Assay --- p.62 / Chapter 2.10 --- Enzyme assay --- p.63 / Chapter 2.10.1 --- Laccase assay --- p.63 / Chapter 2.10.2 --- Manganese peroxidase assay --- p.63 / Chapter 2.10.3 --- Lignin peroxidase assay --- p.64 / Chapter 2.11 --- Toxicity of treated soil --- p.64 / Chapter 2.12 --- Statistical analysis --- p.65 / Chapter 3. --- Results --- p.66 / Chapter 3.1 --- Soil Collection --- p.66 / Chapter 3.1.1 --- North Tsing Yi shipyard --- p.66 / Chapter 3.1.2 --- "Tsam Chuk Wan, Sai Kung" --- p.66 / Chapter 3.2 --- Characterization of soil samples --- p.71 / Chapter 3.3 --- Extraction efficiency of Benzo[a]pyrene --- p.79 / Chapter 3.4 --- Screening and selection of microorganisms --- p.79 / Chapter 3.4.1 --- Isolation ofpotential BaP-degrading microorganisms --- p.79 / Chapter 3.4.2 --- Screening and selection of microbes --- p.87 / Chapter 3.4.2.1 --- Bacteria --- p.87 / Chapter 3.4.2.2 --- Fungi --- p.93 / Chapter 3.4.3 --- Growth curve of the microorganisms --- p.95 / Chapter 3.4.3.1 --- Bacterium --- p.95 / Chapter 3.4.3.2 --- Fungi --- p.99 / Chapter 3.5 --- Comparison of isolated bacterium and fungi --- p.99 / Chapter 3.6 --- Identification of selected microorganisms --- p.102 / Chapter 3.6.1 --- Identification of bacterium --- p.103 / Chapter 3.6.1.1 --- 16S rDNA sequencing --- p.103 / Chapter 3.6.1.2 --- Midi Sherlock® Microbial Identification System (MIDI) --- p.103 / Chapter 3.6.1.3 --- Biolog MicroLog´ёØ system (Biolog) --- p.107 / Chapter 3.6.2 --- Identification of fungi --- p.107 / Chapter 3.6.2.1 --- ITS DNA sequencing --- p.107 / Chapter 3.6.2.2 --- Observation under electronic microscope --- p.113 / Chapter 3.7 --- Optimization of BaP degradation by the selected fungus: Trichoderma asperellum --- p.107 / Chapter 3.7.1 --- Effect of incubation time --- p.107 / Chapter 3.7.2 --- Effect of inoculum size --- p.113 / Chapter 3.7.3 --- Effect of initial BaP concentration --- p.113 / Chapter 3.7.4 --- Effect of soil pH --- p.113 / Chapter 3.7.5 --- Effect of temperature --- p.117 / Chapter 3.8 --- Determination of breakdown products of BaP by BaP-degrading microorganisms --- p.117 / Chapter 3.9 --- Enzyme assay --- p.117 / Chapter 3.10 --- Evaluation of toxicity by using indigenous bacteria --- p.121 / Chapter 4. --- Discussion --- p.128 / Chapter 4.1 --- Physico-chemical properties of soil samples --- p.128 / Chapter 4.2 --- Determination of BaP and other organic compounds --- p.131 / Chapter 4.3 --- Identification of the microorganisms --- p.132 / Chapter 4.3.1 --- Bacteria --- p.132 / Chapter 4.3.2 --- Fungi --- p.134 / Chapter 4.4 --- Biodegradation by BaP-degrading microorganisms --- p.135 / Chapter 4.4.1 --- Isolation and screening of BaP-degrading microorganisms --- p.135 / Chapter 4.4.2 --- Biodegradation of BaP --- p.137 / Chapter 4.4.2.1 --- Bacteria --- p.137 / Chapter 4.4.2.2 --- Fungi --- p.138 / Chapter 4.4.3 --- BaP degradation pathway --- p.140 / Chapter 4.4.3.1 --- Bacteria --- p.140 / Chapter 4.4.3.2 --- Fungi --- p.140 / Chapter 4.5 --- Optimization of PAH degradation by T. asperellum --- p.143 / Chapter 4.5.1 --- Effect of incubation time --- p.143 / Chapter 4.5.2 --- Effect of initial BaP concentration --- p.144 / Chapter 4.5.3 --- Effect of inoculum size fungus --- p.144 / Chapter 4.5.4 --- Effect of soil pH --- p.145 / Chapter 4.5.5 --- Effect of temperature --- p.146 / Chapter 4.6 --- Comparison the selected bacterium and fungi --- p.146 / Chapter 4.7 --- Evaluation of toxicity by using in indigenous bacteria --- p.148 / Chapter 4.8 --- Post treatment by crude enzyme of Pleurotus pulmonarius --- p.149 / Chapter 4.9 --- Limiting factors for BaP degradation --- p.150 / Chapter 4.10 --- Further Investigations --- p.152 / Chapter 5. --- Conclusion --- p.155 / Chapter 6. --- References --- p.158
92

Pollution status and assimilative potential of the wetlands at the Mai Po Marshes Nature Reserve, Hong Kong.

January 1997 (has links)
by Sam Shun-shun Lau. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1997. / Includes bibliographical references (leaves 194-220). / Acknowledgments --- p.i / Abstract --- p.ii / Table of Contents --- p.iv / List of Plates --- p.vii / List of Tables --- p.viii / List of Figures --- p.xi / Chapter CHAPTER 1 --- Introduction / Chapter 1.1 --- Mai Po Marshes Nature Reserve (Hong Kong) --- p.1 / Chapter 1.1.1 --- Site description --- p.1 / Chapter 1.1.2 --- Ecological and conservation importance --- p.4 / Chapter 1.1.2.1 --- Local and international recognition --- p.4 / Chapter 1.1.2.2 --- Birds --- p.7 / Chapter 1.1.2.3 --- Gei wais and its wildlife --- p.10 / Chapter 1.1.2.4 --- Fishpond aquaculture --- p.20 / Chapter 1.1.3 --- Pollution sources and impacts --- p.22 / Chapter 1.2 --- Self-purification Capability of Wetland Ecosystems --- p.32 / Chapter 1.2.1 --- Principles and mechanisms --- p.32 / Chapter 1.2.2 --- Treatment efficiency --- p.38 / Chapter 1.3 --- Objectives and Outlines of the Present Study --- p.42 / Chapter CHAPTER 2 --- Water Quality of the Mai Po Marshes Nature Reserve / Chapter 2.1 --- Introduction --- p.45 / Chapter 2.2 --- Materials and Methods --- p.49 / Chapter 2.2.1 --- Water sampling and analyses --- p.51 / Chapter 2.2.2 --- Statistical analyses --- p.52 / Chapter 2.3 --- Results and Discussion --- p.52 / Chapter 2.3.1 --- Water quality in the Mai Po Marshes --- p.55 / Chapter 2.3.2 --- Spatial pattern of water pollution --- p.74 / Chapter 2.3.3 --- Temporal pattern of water pollution --- p.77 / Chapter 2.3.4 --- Correlation between various parameters --- p.79 / Chapter 2.4 --- Conclusions / Chapter CHAPTER 3 --- Nutrient and Metal Contaminationin Sediments of the Mai Po Marshes Nature Reserve / Chapter 3.1 --- Introduction --- p.81 / Chapter 3.2 --- Materials and Methods --- p.83 / Chapter 3.2.1 --- Sediment collection --- p.83 / Chapter 3.2.2 --- Laboratory analyses --- p.84 / Chapter 3.2.3 --- Statistical analyses --- p.84 / Chapter 3.3 --- Results and Discussion --- p.85 / Chapter 3.3.1 --- Pollution loads in sediments --- p.85 / Chapter 3.3.2 --- Spatial variation of contamination in sediments --- p.88 / Chapter 3.3.3 --- Temporal variation of contamination in sediments --- p.113 / Chapter 3.3.4 --- Vertical variation of contamination in sediments --- p.124 / Chapter 3.3.5 --- Correlation between various parameters --- p.131 / Chapter 3.4 --- Conclusions --- p.133 / Chapter CHAPTER 4 --- Behaviour of Contaminants in Sediments in a Shrimp-growing Gei Wai / Chapter 4.1 --- Introduction --- p.136 / Chapter 4.2 --- Materials and Methods --- p.137 / Chapter 4.2.1 --- Sediment collection --- p.137 / Chapter 4.2.2 --- General physico-chemical analyses --- p.139 / Chapter 4.2.3 --- Effects of salinity and temperature --- p.140 / Chapter 4.2.4 --- Effects of drying --- p.140 / Chapter 4.2.5 --- Toxicity assays --- p.141 / Chapter 4.2.5.1 --- Preparation of sediment extract for toxicity tests --- p.141 / Chapter 4.2.5.2 --- Microtox® toxicity testing --- p.141 / Chapter 4.2.5.3 --- Algal bioassay --- p.142 / Chapter 4.2.5.3.1 --- Algal culture --- p.142 / Chapter 4.2.5.3.2 --- Algal growth inhibition test --- p.142 / Chapter 4.2.5.4 --- Amphipod bioassay --- p.143 / Chapter 4.2.6 --- Statistical analyses --- p.144 / Chapter 4.3 --- Results and Discussion --- p.144 / Chapter 4.3.1 --- General properties --- p.144 / Chapter 4.3.2 --- Effects of temperature and salinity --- p.148 / Chapter 4.3.3 --- Effects of drying --- p.151 / Chapter 4.3.4 --- Toxicity assays --- p.154 / Chapter 4.4 --- Conclusions --- p.156 / Chapter CHAPTER 5 --- Self-purification Capability of Gei Wais at the Mai Po Marshes Nature Reserve / Chapter 5.1 --- Introduction --- p.159 / Chapter 5.2 --- Materials and Methods --- p.161 / Chapter 5.2.1 --- Sample collection --- p.161 / Chapter 5.2.2 --- Laboratory analyses --- p.161 / Chapter 5.2.3 --- Statistical analyses --- p.166 / Chapter 5.3 --- Results and Discussion --- p.167 / Chapter 5.3.1 --- Changes in water quality --- p.178 / Chapter 5.3.1 --- Removal efficiency --- p.185 / Chapter 5.4 --- Conclusions / Chapter CHAPTER 6 --- General Conclusions --- p.188 / References / Appendices
93

Assessment of airborne lead sources in Hong Kong using stable lead isotopic ratios.

January 2001 (has links)
Poon Lok-man. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 126-128). / Abstracts in English and Chinese. / ABSTRACT --- p.ii / ACKNOWLEDGEMENT --- p.v / LIST OF TABLES --- p.vi / LIST OF FIGURES --- p.vii / GLOSSARY --- p.viii / Chapter CHAPTER 1: --- INTRODUCTION --- p.1 / Chapter CHAPTER 2: --- AIR POLLUTANTS AND ENVIRONMENTAL MONITORING --- p.8 / Chapter CHAPTER 3: --- PRINCIPLE OF LEAD FINGERPRINTING --- p.15 / Chapter CHAPTER 4: --- INSTRUMENTATION AND THEORY --- p.20 / Chapter CHAPTER 5: --- OPTIMIZATION OF ANALYTICAL PERFORMANCE IN LEAD ISOTOPE ANALYSIS --- p.29 / Chapter CHAPTER 6: --- DETERMINATION OF LEAD CONTENTS AND ISOTOPIC RATIOS IN POTENTIAL AIRBORNE LEAD SOURCES --- p.55 / Chapter CHAPTER 7: --- DETERMINATION OF LEAD CONTENT IN PARTICULATES COLLECTED ONTO HV-FILTERS --- p.69 / Chapter CHAPTER 8: --- ENVIRONMENTAL SURVEY --- p.74 / Chapter CHAPTER 9: --- "CONCLUSIONS, LIMITATIONS AND FURTHER DIRECTION" --- p.97 / APPENDICES --- p.105 / BIBLIOGRAPHY --- p.126
94

Isolation and characterization of indoor airborne bacteria =: 室內空氣細菌的分離及分析研究. / 室內空氣細菌的分離及分析研究 / Isolation and characterization of indoor airborne bacteria =: Shi nei kong qi xi jun de fen li ji fen xi yan jiu. / Shi nei kong qi xi jun de fen li ji fen xi yan jiu

January 2003 (has links)
Chan Pui-Ling. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2003. / Includes bibliographical references (leaves 169-182). / Text in English; abstracts in English and Chinese. / Chan Pui-Ling. / Acknowledgements --- p.i / Abstracts --- p.ii / Table of Contents --- p.v / List of Plates --- p.ix / List of Figures --- p.xii / List of Tables --- p.xiv / Abbreviations --- p.xviii / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Indoor Air Quality (IAQ): An overview --- p.1 / Chapter 1.1.1 --- Importance of indoor air quality --- p.2 / Chapter 1.1.2 --- Common indoor air pollutants --- p.2 / Chapter 1.1.3 --- Airborne bacteria --- p.4 / Chapter 1.1.3.1 --- Possible sources of airborne bacteria --- p.4 / Chapter 1.1.3.2 --- Health effects of the airborne bacteria --- p.5 / Chapter a. --- Sick building syndromes --- p.5 / Chapter b. --- Building-related illness --- p.7 / Chapter 1.1.4 --- Importance of studying airborne bacteria --- p.12 / Chapter 1.2 --- Situation in Hong Kong --- p.13 / Chapter 1.2.1 --- Outdoor air quality --- p.14 / Chapter 1.2.2 --- Indoor air quality --- p.14 / Chapter 1.2.2.1 --- Hong Kong studies --- p.16 / Chapter 1.2.3 --- Air quality objectives in Hong Kong --- p.18 / Chapter 1.3 --- Different sampling methods --- p.18 / Chapter 1.4 --- Identification of bacteria --- p.24 / Chapter 1.5 --- Site selection --- p.26 / Chapter 2 --- Objectives --- p.28 / Chapter 3 --- Materials and methods --- p.29 / Chapter 3.1 --- Samples collection --- p.29 / Chapter 3.1.1 --- Sampling site --- p.29 / Chapter 3.1.2 --- Complete Biosampler System --- p.29 / Chapter 3.1.3 --- Sampling preparation --- p.33 / Chapter 3.1.4 --- Sampling procedures --- p.33 / Chapter 3.2 --- Recovery of the airborne bacteria --- p.36 / Chapter 3.2.1 --- Cultural medium --- p.36 / Chapter 3.2.2 --- Recovery procedures --- p.36 / Chapter 3.2.3 --- Frozen stocks --- p.37 / Chapter 3.3 --- Indentification of bacterial strains --- p.37 / Chapter 3.3.1 --- Gram stain --- p.37 / Chapter 3.3.1.1 --- Chemical reagents --- p.37 / Chapter 3.3.1.2 --- Gram stain procedures --- p.38 / Chapter 3.3.2 --- Oxidase test --- p.38 / Chapter 3.3.2.1 --- Chemical reagents --- p.38 / Chapter 3.3.2.2 --- Oxidase test procedures --- p.41 / Chapter 3.3.3 --- Midi Sherlock® Microbial Identification System (MIDI) --- p.41 / Chapter 3.3.3.1 --- Culture medium --- p.41 / Chapter 3.3.3.2 --- Chemical reagents --- p.41 / Chapter 3.3.3.3 --- MIDI procedures --- p.41 / Chapter 3.3.4 --- Biolog MicroLogTM system (Biolog) --- p.41 / Chapter 3.3.4.1 --- Culture medium --- p.41 / Chapter 3.3.4.2 --- Chemical reagents --- p.44 / Chapter 3.3.4.3 --- Biolog procedures --- p.44 / Chapter 3.3.5 --- DuPont Qualicon RiboPrinter® Microbial Characterization System (RiboPrinter) --- p.46 / Chapter 3.3.5.1 --- Culture medium --- p.46 / Chapter 3.3.5.2 --- Chemical reagents --- p.46 / Chapter 3.3.5.3 --- RiboPrinter procedures --- p.46 / Chapter 4 --- Results --- p.50 / Chapter 4.1 --- Sample naming system --- p.50 / Chapter 4.2 --- Interpretation of results --- p.50 / Chapter 4.2.1 --- Midi Sherlock® Microbial Identification System (MIDI) --- p.51 / Chapter 4.2.2 --- Biolog MicroLog´ёØ System (Biolog) --- p.51 / Chapter 4.2.3 --- DuPont Qualicon RiboPrinter® Microbial Characterization System (RiboPrinter) --- p.52 / Chapter 4.3 --- Sample results --- p.53 / Chapter 4.3.1 --- Sample 1 (Spring) --- p.53 / Chapter 4.3.2 --- Sample 2 (Summer-holiday) --- p.62 / Chapter 4.3.3 --- Sample 3 (Summer-school time) --- p.71 / Chapter 4.3.4 --- Sample 4 (Autumn) --- p.81 / Chapter 4.3.5 --- Sample 5 (Winter) --- p.90 / Chapter 4.4 --- Bacterial profile of the student canteen --- p.100 / Chapter 4.5 --- The cell and colony morphology of the dominant bacteria --- p.100 / Chapter 4.6 --- Comparison between samples --- p.121 / Chapter 4.6.1 --- Spatial variation --- p.121 / Chapter 4.6.1.1 --- Spatial effect on bacterial abundance --- p.121 / Chapter 4.6.1.2 --- Spatial effect on species diversity --- p.121 / Chapter 4.6.2 --- Daily variation --- p.126 / Chapter 4.6.2.1 --- Daily effect on bacterial abundance --- p.126 / Chapter 4.6.2.2 --- Daily effect on species diversity --- p.126 / Chapter 4.6.3 --- Seasonal variation --- p.126 / Chapter 4.6.3.1 --- Seasonal effect on bacterial abundance --- p.126 / Chapter 4.6.3.2 --- Seasonal effect on species diversity --- p.130 / Chapter 4.7 --- Temperature effect on individual airborne bacterial population --- p.130 / Chapter 4.7.1 --- Gram positive bacteria --- p.130 / Chapter 4.7.2 --- Gram negative bacteria --- p.130 / Chapter 4.8 --- Effect of relative humidity on individual airborne bacterial population --- p.137 / Chapter 4.8.1 --- Gram positive bacteria --- p.137 / Chapter 4.8.2 --- Gram negative bacteria --- p.137 / Chapter 5 --- Discussion --- p.143 / Chapter 5.1 --- Bacterial profile --- p.143 / Chapter 5.1.1 --- Bacterial diversity --- p.143 / Chapter 5.1.2 --- Information of the identified bacteria from the student canteen --- p.144 / Chapter 5.1.3 --- Pathogenicity --- p.153 / Chapter 5.1.4 --- Summary on the bacterial profile --- p.153 / Chapter 5.2 --- Comparison between samples --- p.160 / Chapter 5.2.1 --- Spatial variation (Sampling point 1 against Sampling point 2) --- p.160 / Chapter 5.2.2 --- Daily variation (Morning against Afternoon) --- p.161 / Chapter 5.2.3 --- Seasonal variation --- p.162 / Chapter 5.2.4 --- Summer holiday against Summer school time --- p.163 / Chapter 5.2.5 --- Summary on the factors affecting the bacterial content --- p.164 / Chapter 5.3 --- Summary on indoor air quality of the student canteen in terms of bacterial level. --- p.166 / Chapter 6 --- Conclusions --- p.168 / Chapter 7 --- References --- p.169 / Appendix 1 --- p.183 / Appendix 2 --- p.187
95

A daily forecasting system of marine beach water quality in Hong Kong

Thoe, Wai., 陶煒. January 2010 (has links)
published_or_final_version / Civil Engineering / Doctoral / Doctor of Philosophy
96

Green Movement in Hong Kong

Tang, Man-wing, Eddie., 鄧文穎. January 1991 (has links)
published_or_final_version / Urban Studies / Master / Master of Social Sciences
97

Impact of urban physical design attributes on urban air quality and microclimate: towards formulation of urbandesign guidelines for Mong Kok

Edussuriya, Priyantha S. January 2000 (has links)
published_or_final_version / Urban Design / Master / Master of Urban Design
98

A review of the control of motor vehicle fuel specifications and its effects on air quality

Choi, Ya-yin., 蔡雅然. January 2003 (has links)
published_or_final_version / Environmental Management / Master / Master of Science in Environmental Management
99

Air pollution impacts as indicated by roadside air quality monitoring stations

江顯其, Kong, Hin-kee. January 1999 (has links)
published_or_final_version / Environmental Management / Master / Master of Science in Environmental Management
100

In vitro cytotoxicity of metal ions and roadside dust collected in Hong Kong.

January 2002 (has links)
Lau Wing-Ngar Vivian. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 135-144). / Abstracts in English and Chinese. / Acknowledgements --- p.i / Abstract --- p.ii / Abbreviations --- p.vi / List of figures --- p.viii / List of tables --- p.xi / Contents --- p.xiii / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- General introduction --- p.1 / Chapter 1.2 --- Roadside air pollution worldwide and in Hong Kong --- p.2 / Chapter 1.2.1 --- Air quality in Hong Kong --- p.3 / Chapter 1.3 --- Characteristics of particulate matter --- p.9 / Chapter 1.4 --- Composition and sources of particulate matter --- p.11 / Chapter 1.5 --- Toxic effects of particulate matter --- p.12 / Chapter 1.5.1 --- Lung injury --- p.12 / Chapter 1.5.2 --- Cardiovascular injury --- p.15 / Chapter 1.5.3 --- Mutagenesis and carcinogenesis --- p.16 / Chapter 1.6 --- Aims of my study --- p.16 / Chapter 2 --- Toxic Effects of Heavy Metals Ions on Selected Cultured Cell-lines --- p.18 / Chapter 2.1 --- Introduction --- p.18 / Chapter 2.1.1 --- Metals --- p.18 / Chapter 2.1.1.1 --- Cadmium --- p.22 / Chapter 2.1.1.2 --- Chromium --- p.23 / Chapter 2.1.1.3 --- Lead --- p.25 / Chapter 2.1.1.4 --- Zinc --- p.26 / Chapter 2.1.2 --- Metallothioneins --- p.28 / Chapter 2.1.3 --- p53 --- p.31 / Chapter 2.1.4 --- Tumor Necrosis Factor-alpha (TNF-α) --- p.32 / Chapter 2.1.5 --- Aims of this chapter --- p.32 / Chapter 2.2 --- Materials and methods --- p.35 / Chapter 2.2.1 --- Reagents --- p.35 / Chapter 2.2.2 --- Cultured Cell lines --- p.35 / Chapter 2.2.2.1 --- PU5-18 --- p.36 / Chapter 2.2.2.2 --- LL24 --- p.36 / Chapter 2.2.2.3 --- HBE4-E6/E7 --- p.37 / Chapter 2.2.3 --- Cytotoxicity assays --- p.37 / Chapter 2.2.4 --- ELISA assays --- p.40 / Chapter 2.2.4.1 --- ELISA assay ofp53 levels --- p.41 / Chapter 2.2.4.2 --- ELISA assay of TNF-α levels --- p.43 / Chapter 2.2.5 --- MT gene expression studies by Luciferase assay --- p.44 / Chapter 2.2.5.1 --- PCR amplification --- p.44 / Chapter 2.2.5.2 --- 5´ة End modification of PCR amplified DNA --- p.44 / Chapter 2.2.5.3 --- Ligation of DNA fragment to linearized vector --- p.46 / Chapter 2.2.5.4 --- E. coli. transformation by heat shock --- p.46 / Chapter 2.2.5.5 --- PCR sequencing --- p.47 / Chapter 2.2.5.6 --- Transfection of plasmid into HBE4-E6/E7 cells --- p.49 / Chapter 2.2.5.7 --- Data analysis --- p.50 / Chapter 2.3 --- Results and discussion --- p.51 / Chapter 2.3.1 --- Cytotoxicity assays --- p.51 / Chapter 2.3.2 --- Combination effects of metals on cytotoxicity --- p.61 / Chapter 2.3.3 --- p53 --- p.65 / Chapter 2.3.4 --- TNF-α --- p.68 / Chapter 2.3.5 --- MT gene expression studies by Luciferase assay --- p.69 / Chapter 2.4 --- Conclusion --- p.74 / Chapter 3 --- Effects of Polycyclic Aromatic Hydrocarbons (PAHs) on Cultured Cell-lines --- p.75 / Chapter 3.1 --- Introduction --- p.75 / Chapter 3.2 --- Materials and methods --- p.79 / Chapter 3.2.1 --- Reagents --- p.79 / Chapter 3.2.2 --- Cell culture --- p.79 / Chapter 3.2.3 --- AlamarBlue assay --- p.80 / Chapter 3.2.4 --- EROD assay --- p.80 / Chapter 3.3 --- Results and discussion --- p.84 / Chapter 3.4 --- Conclusion --- p.88 / Chapter 4 --- Chemical and Biological Assays on Roadside Dust --- p.89 / Chapter 4.1 --- Introduction --- p.89 / Chapter 4.1.1 --- Composition of particulate matter in Hong Kong --- p.89 / Chapter 4.1.2 --- Metal contents of particulate matter in Hong Kong --- p.91 / Chapter 4.1.3 --- Possible adverse health impacts of particulate matter --- p.94 / Chapter 4.1.3.1 --- In vitro studies using different cell models --- p.94 / Chapter 4.1.3.2 --- In vivo studies using rodents --- p.97 / Chapter 4.1.3.3 --- Epidemiological studies --- p.98 / Chapter 4.1.4 --- Aims of this chapter --- p.100 / Chapter 4.2 --- Materials and methods --- p.101 / Chapter 4.2.1 --- Sampling of roadside dust --- p.101 / Chapter 4.2.2 --- Chemical analysis of roadside dust --- p.104 / Chapter 4.2.2.1 --- Reagents --- p.104 / Chapter 4.2.2.2 --- Total metal contents --- p.105 / Chapter 4.2.2.3 --- Extractable metal contents --- p.105 / Chapter 4.2.3 --- Biological assays --- p.105 / Chapter 4.2.3.1 --- Cell models --- p.106 / Chapter 4.2.3.2 --- Pretreatment of roadside dust --- p.106 / Chapter 4.2.3.3 --- AlamarBlue assay --- p.106 / Chapter 4.2.3.4 --- ELISA assays --- p.108 / Chapter 4.2.3.5 --- Luciferase assay --- p.108 / Chapter 4.3 --- Results and discussion --- p.110 / Chapter 4.3.1 --- Total metal contents --- p.110 / Chapter 4.3.2 --- Extractable metal contents --- p.113 / Chapter 4.3.3 --- AlamarBlue assay --- p.116 / Chapter 4.3.4 --- p53 --- p.122 / Chapter 4.3.5 --- TNF-α --- p.122 / Chapter 4.3.6 --- Luciferase assay --- p.126 / Chapter 4.4 --- Conclusion --- p.129 / Chapter 5 --- General discussion and conclusion --- p.130 / Chapter 6 --- References --- p.135

Page generated in 0.4067 seconds