• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 30
  • 30
  • 30
  • 30
  • 14
  • 14
  • 14
  • 11
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis and Characterization of Phenylethynyl Terminated Poly(arylene ether sulfone)s as Thermosetting Structural Adhesives and Composite Matrices

Mecham, Sue Jewel 11 February 1998 (has links)
High temperature, solvent resistant materials which also display good mechanical properties are desired for use as aerospace structural adhesives and polymer matrix/carbon fiber composites. High molecular weight amorphous poly(arylene ether sulfone) thermoplastic materials display many of these desirable characteristics but are deficient in solvent resistance. Previous attempts to prepare poly(arylene ether) based thermosets to improve solvent resistance have been largely unsuccessful due to processiblity issues from the low curing temperature and high glass transition temperature of the thermoset precursor. Incorporation of a high temperature curable (* 350°C) endgroup such as 3-phenylethynylphenol in the synthesis of controlled molecular weight poly(arylene ether sulfone) oligomers has allowed for a large processing window prior to the exothermic cure that forms the desired networks. Control of oligomer molecular weight and backbone structure has allowed for further control of the processing, thermal transitions and adhesive properties of the thermosets. A systematic series of phenylethynyl terminated oligomers derived from either bisphenol A, or wholly aromatic hydroquinone or biphenol has been synthesized and characterized to determine the influence of backbone structure, molecular weight, and endgroup structure on thermoset properties. The features most affected by backbone structure included thermal stability (weight loss behavior) as well as transition temperatures (Tg, Tm), and processing characteristics. Increasing molecular weight of the oligomer produced a decrease in the glass transition temperature of the network and an increase in the adhesive properties of the thermoset. Comparison of the curing behavior of the 3-phenylethynylphenol endcapped materials with other related phenylethynyl terminated compounds led to the synthesis and systematic investigation of the curing behavior of phenylethynyl endcappers in which the electronic environment in relation to the reactive ethynyl carbons was systematically varied. Electron withdrawing groups, eg. sulfone, ketone, imide on the aryl ring para to the acetylene bond enhanced the rate of cure and also appear to improve the lap shear adhesion to suface treated titanium adherands. Discussion of the background, synthesis and characterization are described in this dissertation. / Ph. D.
2

Synthesis and Characterization of Hydrophilic-Hydrophobic Poly (Arylene Ether Sulfone) Random and Segmented Copolymers for Membrane Applications

Nebipasagil, Ali 26 January 2015 (has links)
Poly(arylene ether sulfone)s are high-performance engineering thermoplastics that have been investigated extensively over the past several decades due to their outstanding mechanical properties, high glass transition temperatures (Tg), solvent resistance and exceptional thermal, oxidative and hydrolytic stability. Their thermal and mechanical properties are highly suited to a variety of applications including membrane applications such as reverse osmosis, ultrafiltration, and gas separation. This dissertation covers structure-property-performance relationships of poly(arylene ether sulfone) and poly(ethylene oxide)-containing random and segmented copolymers for reverse osmosis and gas separation membranes. The second chapter of this dissertation describes synthesis of disulfonated poly(arylene ether sulfone) random copolymers with oligomeric molecular weights that contain hydrophilic and hydrophobic segments for thin film composite (TFC) reverse osmosis membranes. These copolymers were synthesized and chemically modified to obtain novel crosslinkable poly(arylene ether sulfone) oligomers with acrylamide groups on both ends. The acrylamide-terminated oligomers were crosslinked with UV radiation in the presence of a multifunctional acrylate and a UV initiator. Transparent, dense films were obtained with high gel fractions. Mechanically robust TFC membranes were prepared from either aqueous or water-methanol solutions cast onto a commercial UDEL® foam support. This was the first example that utilized a water or alcohol solvent system and UV radiation to obtain reverse osmosis TFC membranes. The membranes were characterized with regard to composition, surface properties, and water uptake. Water and salt transport properties were elucidated at the department of chemical engineering at the University of Texas at Austin. The gas separation membranes presented in chapter three were poly(arylene ether sulfone) and poly(ethylene oxide) (PEO)-containing polyurethanes. Poly(arylene ether sulfone) copolymers with controlled molecular weights were synthesized and chemically modified to obtain poly(arylene ether sulfone) polyols with aliphatic hydroxyethyl terminal functionality. The hydroxyethyl-terminated oligomers and α-ω-hydroxy-terminated PEO were chain extended with a diisocyanate to obtain polyurethanes. Compositions with high poly(arylene ether sulfone) content relative to the hydrophilic PEO blocks were of interest due to their mechanical integrity. The membranes were characterized to analyze their compositions, thermal and mechanical properties, water uptake, and molecular weights. These membranes were also evaluated by collaborators at the University of Texas at Austin to explore single gas transport properties. The results showed that both polymer and transport properties closely related to PEO-content. The CO2/CH4 gas selectivities of our membranes were improved from 25 to 34 and the CO2/N2 gas selectivity nearly doubled from 25 to 46 by increasing PEO-content from 0 to 30 wt.% in polyurethanes. Chapter four also focuses on polymers for gas separation membranes. Disulfonated poly(arylene ether sulfone) and poly(ethylene oxide)-containing polyurethanes were synthesized for potential applications as gas separation membranes. Disulfonated polyols containing 20 and 40 mole percent of disulfonated repeat units with controlled molecular weights were synthesized. Poly(arylene ether sulfone) polyols and α,ω-hydroxy-terminated poly(ethylene oxide) were subsequently chain extended with a diisocyanate to obtain polyurethanes. Thermal and mechanical characterization revealed that the polyurethanes had a phase-mixed complex morphology. / Ph. D.
3

Routes to N-Heterocycle Functionalized Poly(arylene ether sulfone)s

Picker, Jesse L. 03 September 2014 (has links)
No description available.
4

Modifiable Poly(arylene ether)s and Hyperbranched Poly(esters)

Werry, Brian Scott 20 August 2007 (has links)
No description available.
5

Modified Poly(arylene ether sulfone) Compositions and their Segmented Block Copolymers

Cureton, LaShonda Tanika 06 December 2010 (has links)
A series of modified poly(arylene ether sulfone)s (PAES) incorporating hexafluoroisopropylidene units and co-monomers, bisphenol A (BA), 4,4′-dihydroxyterphenyl (DHTP) and triptycene-1,4-hydroquinone (TPDH), were synthesized using a polyetherification synthetic method. These thermoplastic PAES were copolymerized with the elastomer, polydimethylsiloxane (PDMS) to form segmented block copolymers. The segmented block copolymers with diverse PAES structures were studied and investigated for their thermal, tensile, and morphological properties. These multiphase segmented block copolymer materials have the potential to impart useful combinations of optical transparency, thermal stability, and enhanced tensile properties, and enhanced environmentally resistant properties for various high impact, high performance applications. In Chapter 2, hexafluoroisopropylidene bisphenol PAES (BAF PAES) segmented block copolymers containing various volume fraction of PDMS were synthesized. Analysis of the segmented block copolymer films by atomic force microscopy (AFM) and small angle x-ray scattering (SAXS) show the materials are microphase separated. Further analysis of the BAF PAES segmented block copolymers by transmission electron microscopy (TEM) show an increased morphological order with decreasing PDMS content, with lamellar morphologies formed at higher or near equal PAES and PDMS volume fractions. Comparatively, the morphological properties of the BAF PAES segmented block copolymers are considerably different from the isopropylidene bisphenol PAES (BA PAES) segmented block copolymer of similar PDMS volume percents. In this document, segmented block copolymers prepared from BA PAES incorporating 4,4′-dihydroxyterphenyl (DHTP) and triptycene-1,4-hydroquinone (TPDH) co-monomers were characterized by proton nuclear magnetic resonance spectroscopy (¹H NMR). Films of these materials, prepared from THF solution, were tested for thermal and tensile properties. These materials provide higher thermal stabilities over the BA PAES segmented block copolymers with thermal degradation ranging 380–435 °C under nitrogen at 5%-wt. loss. Similarly, the PAES incorporating co-monomers gave higher Tg (200 °C) than the BA PAES (183 °C) synthesized in our labs. Previously synthesized BA PAES segmented block copolymers showed plastic to elastomeric tensile properties upon increasing addition of PDMS content. These new segmented block copolymers, incorporating co-monomers, provided comparable results with the reported BA PAES segmented block copolymers analogues. The last research topic discussed in this dissertation covers the preparation of blends from 5% of segmented block copolymer and 95% of Udel®, donated by Solvay Advanced Polymers. The preparation of blends from the segmented block copolymers containing random copolymers led to materials with higher moduli than Udel® as observed by dynamic mechanical analysis (DMA). Tensile measurements performed by Instron also show the blends have high moduli, though no changes in the tensile elongation comparable to Udel®. / Ph. D.
6

Proton Exchange Membrane Fuel Cell Systems Based on Aromatic Hydrocarbon and Partially Fluorinated Disulfonated Poly(Arylene Ether) Copolymers

Sankir, Mehmet 10 January 2006 (has links)
This dissertation describes the past and recent progress in proton exchange membranes (PEM) for fuel cells. In particular the synthesis and characterization of materials for advanced alternative PEM were studied with an emphasis on structure-property and structure-property-performance relationships. The focus has included firstly a one-step synthesis and characterization of 3,3'-disulfonated 4,4'-dichlorodiphenyl sulfone comonomer. The procedure developed is adaptable for industrial-scale commercialization efforts. Secondly, the synthesis of aromatic nitrile containing poly (arylene ether sulfone) random copolymers was demonstrated. Various levels of disulfonation allowed the membrane characteristics to be investigated as a function of the membrane ion exchange capacity. The results favorably compare with the current state-of-the-art (Nafion™), particularly for direct methanol systems (DMFC). Thirdly, the mechanically and thermooxidatively stable copolymer membranes were blended with heteropolyacids producing nanocomposites which have potential in higher temperature fuel cell applications. Lastly, the basic PEM parameters such as water uptake, proton conductivity, and methanol permeabilities were controlled and presented as tunable properties as a function of molecular structure. This was achieved by in-situ control of chemical composition. The direct methanol fuel cell performance (DMFC) was much better than Nafion™. Hydrophobic surface properties of the membranes were improved by partial fluorination which made the Nafion™ bonded electrodes more compatible with the partially fluorinated copolymer membranes. The influence of surface enrichment had two important roles in increasing both initial and long term performance tests. The surface fluorine provided lower contact resistance and lower water uptake. The former was important for the initial tests and the latter provides for better long term performances. A delamination failure mechanism was proposed for the hydrocarbon membrane electrode assemblies (MEA) due to the large difference between water uptake of the catalyst layer and membrane and this was verified by a reduction in high frequency resistance (HFR) for the partially fluorinated systems. This thesis has generated the structure-property and structure-property-performance relationships which will provide direction for the development of next generation (PEM) materials. / Ph. D.
7

Synthesis and Characterization of Multiblock Copolymer Proton Exchange Membranes for High Temperature Fuel Cell Applications

Lee, Hae-Seung 04 June 2009 (has links)
The potential success of a proton exchange membrane (PEM) fuel cell as an alternative energy source depends highly upon the development of high performance PEMs. Typically, state-of-the-art PEMs have been perfluorinated sulfonated ionomer membranes such as Nafion® by DuPont. Although these membranes demonstrate good mechanical and electrochemical properties under moderate operating conditions (e.g., < 80 ºC), their performance at high temperature (e.g., > 80 ºC) and low relative humidity (RH) drastically deteriorates. To overcome these problems, PEM materials with enhanced properties are essential. Recently, the McGrath group has shown that PEM materials with hydrophilic-hydrophobic segments can significantly improve proton conductivity under low RH by forming enhanced hydrophilic domain connectivity. In this dissultation, novel multiblock copolymers based on disulfonated hydrophilic-hydrophobic multiblocks were synthesized and investigated for their potential application as PEMs. The relationship between copolymer chemical composition and resulting properties was probed with a variety of hydrophilic and hydrophobic segments. Most multiblock copolymers in this research were developed with fully disulfonated poly(arylene ether sulfone) (BPS100) as the hydrophilic segment, and various high performance polymers including polyimides, poly(arylene ether sulfone)s, and poly(arylene ether ketone)s as the hydrophobic segment. Ionic groups on the hydrophilic blocks act as proton conducting sites, while the non-ionic hydrophobic segments provide mechanical and dimensional stability. The correlation between the fuel cell performances and the hydrophilic-hydrophobic sequences was also evaluated. The morphological structures of the multiblock copolymers were investigated using tapping mode atomic force microscopy (TM-AFM), transmission electron microscopy (TEM), and dynamic mechanical analysis (DMA). The experiments demonstrated a well-defined nanophase separated morphology. Moreover, changes in block length had a pronounced effect on the development of phase separated morphology of the system. Proton conductivity measurements elucidated the transport process in the system, with the multiblock copolymers demonstrating higher conductivities compared to Nafion and random copolymer systems with similar ion exchange capacity (IEC) values. The new materials are strong candidates for use in PEM systems. / Ph. D.
8

Benign Processing of High Performance Polymeric Foams of Poly(arylene ether sulfone)

VanHouten, Desmond J. 18 December 2008 (has links)
This work is concerned with the production of high performance polymer foams via a benign foaming process. The first goal of this project was to develop a process and the conditions necessary to produce a low density (>80% density reduction) foam from poly(arylene ether sulfone) (PAES). Water and supercritical carbon dioxide (scCO2) were used as the blowing agents in a one-step batch foaming process. Both water and scCO2 plasticize the PAES, allowing for precise control on both the foam morphology and the foam density. To optimize the foaming conditions, both thermogravimetric analysis and differential scanning calorimetery (DSC) were used to determine the solubility and the reduced glass transition temperature (Tg) due to plasticization of the polymer. It was determined that 2 hours was sufficient time to saturate the PAES with water and scCO2 when subjected to a temperature of 220 oC and 10.3 MPa of pressure. Under these conditions, a combination of 7.5% of water and scCO2 were able to diffuse into the PAES specimen, correlating to ~60 oC reduction in the Tg of the PAES. The combination of water and scCO2 produced foam with up to an 80% reduction in density. The compressive properties, tensile modulus, and impact strength of the foam were measured. The relative compressive properties were slightly lower than the commercially available structural foam made of poly(methacrylimide). The second objective of the dissertation was to enhance the compressive properties of the PAES foam, without concern for the foam density. Foam was produced over a range of density, by controlling the cell size, in order to optimize the compressive properties. Carbon nanofibers (CNFs) were also added to the PAES matrix prior to foaming to both induce heterogeneous nucleation, which leads to smaller cell size, and to reinforce the cell walls. Dynamic mechanical thermal analysis (DMTA), on saturated CNF-PAES, was used to determine the reduced Tg due to plasticization and establish the temperature for pressure release during foaming. DMTA proved to be more effective than DSC in establishing quantitative results on the reduction in the Tg. The CNF-PAES foam produced had compressive properties up to 1.5 times the compressive properties of the PAES foam. / Ph. D.
9

Synthesis and Characterization of Sulfonated Poly (Arylene Ether Sulfone) Copolymers Via Direct Copolymerization: Candidates for Proton Exchange Membrane Fuel Cells

Harrison, William Lamont 13 December 2002 (has links)
A designed series of directly copolymerized homo- and disulfonated copolymers containing controlled degrees of pendant sulfonic acid groups have been synthesized via nucleophilic step polymerization. Novel sulfonated poly (arylene ether sulfone) copolymers using 4,4'-bisphenol A, 4,4'-biphenol, hexafluorinated (6F) bisphenol AF, and hydroquinone, respectively, with dichlorodiphenyl sulfone (DCDPS) and 3,3'-disodiumsulfonyl-4,4'-dichlorodiphenylsulfone (SDCDPS) were investigated. Molar ratios of DCDPS and SDCDPS were systematically varied to produce copolymers of controlled compositions, which contained up to 70 mol% of disulfonic acid moiety. The goal is to identify thermally, hydrolytically, and oxidatively stable high molecular weight, film-forming, ductile ion conducting copolymers, which had properties desirable for proton exchange membranes (PEM) in fuel cells. Commercially available bisphenols were selected to produce cost effective alternative PEMs. Partially aliphatic bisphenol A and hexafluorinated (6F) bisphenol AF produced amorphous copolymers with different thermal oxidative and surface properties. Biphenol and hydroquinone was utilized to produce wholly aromatic copolymers. The sulfonated copolymers were prepared in the sodium-salt form and converted to the acid moiety via two different methodologies and subsequently investigated as proton exchange membranes for fuel cells. Hydrophilicity increased with the level of disulfonation, as expected. Moreover, water sorption increased with increasing mole percent incorporation of SDCDPS. The copolymers' water uptake was a function of both bisphenol structure and degree of disulfonation. Furthermore, the acidification procedures were shown to influence the Tg values, water uptake, and conductivity of the copolymers. Atomic force microscopy (AFM) in the tapping mode confirmed that the morphology of the copolymers could be designed to display nanophase separation in the hydrophobic and hydrophilic (sulfonated) regions. Morphology with either co-continuous hydrophobic or hydrophilic domains could be attained for all the sulfonated copolymers. The degree of disulfonation required for continuity of the hydrophilic phase varied with biphenol structure. Proton conductivity values for the sulfonated copolymers, under fully hydrated conditions, were a function of bisphenol and degree of sulfonation. However, at equivalent ion exchange capacities the proton conductivities were comparable. A careful balance of copolymer composition and acidification method was necessary to afford a morphology that produced ductile films, which were also sufficiently proton conductive. The copolymers of optimum design produced values of 0.1 S/cm or higher, which were comparable to the commercial polyperfluorosulfonic acid material Nafion™ control. / Ph. D.
10

Synthesis, crosslinking and characterization of disulfonated poly(arylene ether sulfone)s for application in reverse osmosis and proton exchange membranes

Paul, Mou 14 August 2008 (has links)
Novel proton exchange (PEM) and reverse osmosis (RO) membranes for application in fuel cell and water purification respectively were developed by synthesis and crosslinking of disulfonated biphenol-based poly (arylene ether sulfone)s (BPS). Crosslinking is a prospective option to reduce the water swelling and improve the dimensional stability of hydrophilic BPS copolymers. Several series of controlled molecular weight, phenoxide-endcapped BPS copolymers were synthesized via direct copolymerization of disulfonated activated aromatic halide monomers. The degree of disulfonation was controlled by varying the molar ratio of sulfonated to non-sulfonated dihalide monomers. The molecular weights of the copolymers were controlled by offsetting the stoichiometry between biphenol and the dihalides. Biphenol was utilized in excess to endcap the copolymers with phenoxide groups, so that the phenoxide groups could be further reacted with a suitable crosslinker. Several crosslinking reagents such as methacrylate, multifunctional epoxy, phthalonitrile and phenylethynyls were investigated. A wide range of crosslinking chemistries i.e. free radical (methacrylate), step growth (epoxy), heterocyclic (phthalonitrile) and acetylenic (phenylethynyl) was explored. The effects of crosslinking on network properties as functions of molecular weight and degree of disulfonation of copolymers, crosslinking time and concentration of crosslinker were studied. The crosslinked membranes were characterized in terms of gel fraction, water uptake, swelling, self-diffusion coefficients of water, proton conductivity, methanol permeability, water permeability and salt rejection. In general, all of the crosslinked membranes had lower water uptake and swelling relative to their uncrosslinked counterparts, and less water uptake and volume swelling were correlated with increasing gel fractions. It was possible to shift the percolation threshold for water absorption of BPS copolymers to a higher ion exchange capacity (IEC) value compared to that of the uncrosslinked copolymers by means of crosslinking. This reduced water uptake increased the dimensional stability of higher IEC materials and extended their application for potential PEM or RO membranes. The reduction in water uptake and swelling also increased the effective proton concentration, resulting in no significant change in proton conductivity of the membranes after crosslinking. The self-diffusion coefficients of water and methanol permeability decreased with crosslinking, indicating restricted water and methanol transport. Therefore an improvement in the selectivity (ratio of proton conductivity to water swelling or methanol permeability) of PEMs for application in either H2/air or direct methanol fuel cells was achieved by crosslinking. The epoxy crosslinked BPS copolymers also had significantly enhanced salt rejection with high water permeability when tested in for RO applications. Reductions in salt permeability with increasing crosslinking density suggested that crosslinking inhibited salt transport through the membrane. In addition to the random copolymers, two series of multiblocks endcapped with either a phenoxide-terminated hydrophilic unit or a hydrophobic unit were synthesized and crosslinked with a multifunctional epoxy. Besides the crosslinking study, the effect of sequence distributions of the hydrophilic and hydrophobic blocks in the multiblock copolymers was also investigated. Similar to randoms, crosslinked multiblocks had lower water uptake and swelling but comparable proton conductivities relative to their uncrosslinked analogues. / Ph. D.

Page generated in 0.074 seconds