• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 9
  • 7
  • 1
  • 1
  • 1
  • Tagged with
  • 74
  • 74
  • 74
  • 15
  • 13
  • 13
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Structure-Property Relationships of Surfactants at Interfaces and Polyelectrolyte-Surfactant Aggregates

Kjellin, Mikael January 2002 (has links)
The first part of this thesis is concerned with thestructure-property relationships in nonionic surfactantsystems. The main aim was to investigate how the surfactantstructure influences the adsorption at interfaces andinteractions between surfactant coated interfaces.Particularly, the effect of the structure of the surfactantheadgroups was investigated. These were sugar-based headgroupwith varying size and flexibility and poly(ethylene oxide)based headgroups with or without an additional amide or estergroup. The hydrophobic part of the surfactant consisted mostlyof straight alkyl chains, except for one type of poly(ethyleneoxide) based surfactant with a dehydroabietic hydrophobe. The main technique that was used is the surface forcetechnique, with which the forces acting between two adsorbedsurfactant layers on hydrophilic or hydrophobic surfaces can bemeasured. These forces are important for e.g. the stability ofdispersions. The hydrophilic surfaces employed were glass andmica, whereas the hydrophobic surfaces were silanized glass andhydrophobized mica. The adsorption behavior on hydrophilicsurfaces is highly dependent on the type of headgroup andsurface, whereas similar results were obtained on the two typesof hydrophobic surfaces. To better understand how the surfaceforces are affected by the surfactant structure, measurementsof adsorbed amount and theoretical mean-field latticecalculations were carried out. The results show that the sugarsurfactant layers and poly(ethylene oxide) surfactant layersgive rise to very different surface forces, but that the forcesare more similar within each group. The structure-propertyrelationships for many other physical properties have beenstudied as well. These include equilibrium and dynamicadsorption at the liquid-vapor interface, micelle size, micelledynamics, and wetting. The second part in this thesis is about the aggregationbetween cationic polyelectrolytes and an anionic surfactant.The surface force technique was used to study the adsorption ofa low charged cationic polyelectrolyte on mica, and theaggregation between the adsorbed polyelectrolyte with theanionic surfactant. The aggregation in bulk was studied withturbidimetry, small angle neutron scattering (SANS), and smallangle x-ray scattering (SAXS). An internal hexagonal aggregatestructure was found for some of the bulk aggregates. <b>Keywords:</b>nonionic surfactant, sugar surfactant,poly(ethylene oxide), amide, ester, polyelectrolyte, SDS,hydrophobic surface, glass surface, mica, adsorption,aggregation, micelle size, surface forces, wetting, dynamicsurface tension, NMR, TRFQ, SANS, SAXS, mean-field latticecalculations.
62

Structure-Property Relationships of Surfactants at Interfaces and Polyelectrolyte-Surfactant Aggregates

Kjellin, Mikael January 2002 (has links)
<p>The first part of this thesis is concerned with thestructure-property relationships in nonionic surfactantsystems. The main aim was to investigate how the surfactantstructure influences the adsorption at interfaces andinteractions between surfactant coated interfaces.Particularly, the effect of the structure of the surfactantheadgroups was investigated. These were sugar-based headgroupwith varying size and flexibility and poly(ethylene oxide)based headgroups with or without an additional amide or estergroup. The hydrophobic part of the surfactant consisted mostlyof straight alkyl chains, except for one type of poly(ethyleneoxide) based surfactant with a dehydroabietic hydrophobe.</p><p>The main technique that was used is the surface forcetechnique, with which the forces acting between two adsorbedsurfactant layers on hydrophilic or hydrophobic surfaces can bemeasured. These forces are important for e.g. the stability ofdispersions. The hydrophilic surfaces employed were glass andmica, whereas the hydrophobic surfaces were silanized glass andhydrophobized mica. The adsorption behavior on hydrophilicsurfaces is highly dependent on the type of headgroup andsurface, whereas similar results were obtained on the two typesof hydrophobic surfaces. To better understand how the surfaceforces are affected by the surfactant structure, measurementsof adsorbed amount and theoretical mean-field latticecalculations were carried out. The results show that the sugarsurfactant layers and poly(ethylene oxide) surfactant layersgive rise to very different surface forces, but that the forcesare more similar within each group. The structure-propertyrelationships for many other physical properties have beenstudied as well. These include equilibrium and dynamicadsorption at the liquid-vapor interface, micelle size, micelledynamics, and wetting.</p><p>The second part in this thesis is about the aggregationbetween cationic polyelectrolytes and an anionic surfactant.The surface force technique was used to study the adsorption ofa low charged cationic polyelectrolyte on mica, and theaggregation between the adsorbed polyelectrolyte with theanionic surfactant. The aggregation in bulk was studied withturbidimetry, small angle neutron scattering (SANS), and smallangle x-ray scattering (SAXS). An internal hexagonal aggregatestructure was found for some of the bulk aggregates.</p><p><b>Keywords:</b>nonionic surfactant, sugar surfactant,poly(ethylene oxide), amide, ester, polyelectrolyte, SDS,hydrophobic surface, glass surface, mica, adsorption,aggregation, micelle size, surface forces, wetting, dynamicsurface tension, NMR, TRFQ, SANS, SAXS, mean-field latticecalculations.</p>
63

Vibrational Sum Frequency Spectroscopy Studies at the Air-Liquid Interface

Tyrode, Eric January 2005 (has links)
<p>In this thesis the structure and hydration of small organic and amphipilic compounds adsorbed at the air-liquid interface, have been studied using the nonlinear optical technique Vibrational Sum Frequency Spectroscopy (VSFS). The second order nature of the sum frequency process makes this technique particularly surface sensitive and very suitable for interfacial studies, as molecules at the surface can be distinguished even in the presence of a vast excess of the same molecules in the bulk. Particular emphasis was given to the surface water structure and how it is affected by the presence of small model compounds such as acetic acid and formic acid, and also non-ionic surfactants with sugar based and ethylene oxide based polar headgroups. Understanding the structure of water at these interfaces is of considerable fundamental importance, and here VSFS provided unique information. Upon addition of tiny amounts of these surface active compounds, the ordered surface structure of water was found to be significantly perturbed, as revealed by the changes observed in the characteristic spectroscopic signature of the dangling OH bond of water molecules, which vibrate free in air and are present in the top monolayer. Dramatic differences between the different compounds were also observed in the bonded OH region, providing a valuable insight into the hydration of polar groups at interfaces. Additionally, by employing different polarization combinations of the laser beams involved in the sum frequency process, information about the different water species present at the surface and their average orientation were extracted. In particular an unusual state of water was found with a preferred orientation in a non-donor configuration in close proximity to the hydrophobic region formed by the hydrocarbon tails of the surfactant molecules.</p><p>The conformation and orientation of the different adsorbates were also characterized, targeting their specific vibrational frequencies. Noteworthy is the orientation of the fluorocarbon chain of ammonium perfluorononanoate (APFN), which in contrast to the hydrocarbon chains of the other surfactant molecules studied, remained constant over a wide range of surface densities. This behaviour was also observed for the anionic headgroup of sodium dodecyl sulphate (SDS). Other interesting findings were the formation of a cyclic dimer bilayer at the surface of concentrated aqueous solutions of acetic acid and the water structuring effect induced by poly(ethylene-oxide) headgroups, in spite of being themselves disordered at the air-liquid interface.</p>
64

Développement de vecteurs pharmaceutiques pour le relargage contrôlé de principes actifs / Pharmaceutical nanoparticles for the controlled delivery of drugs

Le Meur, Anne-Claire 18 December 2009 (has links)
La délivrance contrôlée de médicaments constitue un enjeu thérapeutique de première importance pour le milieu médical. Elle doit, en effet, permettre de diminuer la toxicité du médicament en limitant sa concentration dans l'organisme et en ciblant son lieu de délivrance. Ce projet de recherche a conduit à la réalisation de nouveaux nano-vecteurs particulaires utilisables pour la délivrance de médicaments par hyperthermie locale. Ces objets sont constitués d'un cœur de polynorbornène et d’une écorce de poly (oxyde d’éthylène) et sont synthétisés par polymérisation par ouverture de cycle de type métathèse (ROMP) en dispersion. L’acide salicylique est encapsulé dans ces particules en tant que molécule modèle. L'originalité de ce sujet pluridisciplinaire réside : dans la nature de la particule, qui permet une libération du principe actif à partir de 35-45°C et dans la technique d'imprégnation des particules par la voie fluide supercritique. / Controlled release systems are attracting increasing interest because of their potential application in biomedical field. Indeed, such systems should enable to lower toxicity of medicines by targeting the therapeutic action and by limiting the concentration of drugs in the organism. In this research project, new nanoparticles have been developed for a thermosensitive control of drugs’ delivery. These particles consist of a polynorbornene core and a polyethylene oxide shell and are developed by dispersion ring opening metathesis polymerization. As a model drug, salicylic acid has been encapsulated in those core-shell materials. This multidisciplinary project is original for two reasons. On the one hand, the nature of the particle which enables to release the drug from 35-45°C. On the other hand, the encapsulation technique that has been chosen is the impregnation under supercritical carbon dioxide.
65

Creating nanopatterned polymer films for use in light-emitting electrochemical cells

Moberg, Thomas January 2018 (has links)
Thermal nanoimprint lithography (T-NIL) is a cheap and fast technique to produce nanopatterns in polymeric materials. It creates these patterns by pressing a stamp down into a polymer film that has been heated above its glass transition temperature. These nanopatterned polymer films can be used in a wide variety of scientific fields, not the least the organic semiconductor industry. There the nanopatterned films have, among else, been used to improve the efficiency of organic light-emitting diodes (OLEDs). The light-emitting electrochemical cell (LEC), which is similar in structure to an OLED, also uses polymer films in their device structure but the light emitting layer also contains an electrolyte. However, it has not been shown if nanopatterns can improve LECs as well or if it is even possible to make an imprint in their polymer films that are mixed with an electrolyte. This thesis shows that T-NIL can be used to imprint nanopatterns in films made of poly(ethylene oxide) and the conjugated polymer Super Yellow. The best nanopatterns were produced by setting the imprint parameters to  85 °C, 10 bar, 1800 s for poly(ethylene oxide) and 115 °C, 20 bar, 1800 s for Super Yellow. Imprints were also performed on polystyrene but no nanopatterns could be produced. This was most likely because the stamp could not handle the high temperature that is required to make a nanopattern in polystyrene. The best imprint parameters of Super Yellow were then used to produce a pattern in a film made of Super Yellow mixed with the salt tetrahexylammonium tetrafluoroborate (THABF4) in order to be able to produce one imprinted and one reference LEC. The imprinted LEC had a luminosity of 139 cd/m2, an improvement of 20% compared to the reference’s 115 cd/m2 when operated under identical conditions.  The forward direction and the angular dependent electroluminescence spectrum of the imprinted LEC clearly showed an effect not observed in the reference. These findings show that the polymer films used in a LEC can be imprinted with a nanopattern by using T-NIL. The imprinted films can be used to create functional LECs that show different behavior and a higher luminosity compared to a non-imprinted reference. If these results can be repeated it might be the starting point of a brighter future.
66

Poly(oxyde d'éthylène)s fonctionnels à extrémité acide phosphonique et à fonctionnalité réversible pour la stabilisation de nanoparticules magnétiques / Poly(oxyde d'éthylène)s fonctionnels à extrémité acide phosphonique et à fonctionnalité réversible pour la stabilisation de nanoparticules magnétiques

Nguyen, Thi Thanh Thuy 09 July 2013 (has links)
Le sujet de cette thèse concerne l'élaboration depolymères hydrophiles biocompatibles et fonctionnelspour la stabilisation et la bio-fonctionnalisation denanoparticules d’oxyde de fer en vue d'une utilisation entant qu’agents de contraste en imagerie par résonancemagnétique et/ou en tant que vecteurs de principesactifs ou de thérapie génique. Pour ce travail de thèse,l'objectif a été de fonctionnaliser des poly(oxyded'éthylène)s (POE) commerciaux, connus pour leurspropriétés d'hydrophilie, de biocompatibilité et defurtivité par un groupement acide phosphonique, pourchélater les nanoparticules d'oxyde de fer, et par ungroupement furane, susceptible de réagir avec desbiomolécules à fonctionnalité maléimide, facilementaccessibles, selon une réaction de Diels-Alderthermoréversible.Des POEs à extrémité acide phosphonique et àfonctionnalité furane ont été synthétisés selon deuxstratégies originales combinant des réactionsd’Atherton-Todd ou de Kabachnik-Fields et lacycloaddition 1,3-dipolaire de Huisgen, réaction dechimie « click » très efficace, orthogonale, spécifique etréalisée dans des conditions douces.Les POEs obtenus ont ensuite été greffés à la surfacede nanoparticules d’oxyde de fer selon la stratégie‘grafting onto’. L’efficacité des POEs à stabiliser lesnanoparticules d’oxyde de fer a été mise en évidence.De plus, les tests de cytotoxicité ont montré que cessystèmes sont biocompatibles. De plus, lesnanoparticules d’oxyde de fer, une fois greffées, ontconservé leurs propriétés de relaxivité autorisant leurutilisation en imagerie médicale. Enfin, l’aptitude de cesnanoparticules fonctionnalisées par des groupementsfurane à immobiliser des molécules à fonctionnalitémaléimide a été mise en évidence ainsi que lapossibilité ultérieure à libérer ces molécules sous effetd’un stimulus thermique. Ce comportement réversibleouvre des perspectives tout à fait intéressantes dans ledomaine de la vectorisation de principes actifs. / The objective of this thesis was the preparation ofbiocompatible hydrophilic functionalized polymers forthe stabilization and bio-functionalization of iron oxidenanoparticles (IONPs) for biomedical applications suchas contrast agents in magnetic resonance imagingand/or targeted drug delivery. In this work, commerciallyavailable poly(ethylene oxide)s (PEO), which havehydrophilic, biocompatibility and furtivity properties havebeen functionalized by a phosphonic acid group, thatstrong anchors on IONPs, and by a furan group that canbe coupled to maleimide-terminated biomolecules by athermoreversible Diels-Alder reaction.Phosphonic acid-terminated PEOs fonctionalized by afurane group were synthesized according to two originalstrategies combining an Atherton-Todd or a Kabachnik-Fields reaction and a 1,3-dipolar cycloaddition reaction.This latter reaction, also named ‘click’ reaction, ischaracterized by high yields, simple reaction conditions,fast reaction times, and high selectivity.These PEOs were attached to the IONPs surface usingthe 'grafting onto' strategy. The subsequent polymerstabilizedIONPs were characterized, proving thepresence of polymers on IONPs surfaces. Cytotoxicitystudies revealed that the IONPs carriers werebiocompatible. In addition, studies on the protontransverse relaxation enhancement properties of thesestabilized IONPs indicated high relaxivities in the samerange as iron oxide based commercially availablecontrast agents. Finally, polymer-stabilized IONPs weresuccessfully functionalized by maleimide-functionalizedmolecules according to the Diels-Alder reaction and thesubsequent release of these molecules via a thermalstimulus has been proven. Consequently, this type ofcontrolled-release system could be expanded to drugtherapy responding to external stimuli.
67

Ultra-large sheet formation by 1D to 2D hierarchical self-assembly of a “rod–coil” graft copolymer with a polyphenylene backbone

Huang, Yinjuan, Yuan, Rui, Xu, Fugui, Mai, Yiyong, Feng, Xinliang, Yan , Deyue 17 July 2017 (has links) (PDF)
This communication reports a unique ultra-large sheet formation through hierarchical self-assembly of a rod–coil graft copolymer containing a rigid polyphenylene backbone and flexible poly(ethylene oxide) (PEO) side chains. The hierarchical self-assembly process involved a distinctive morphological transition of 1D helical to 2D superstructures. The graft copolymer offers a new chance for the challenging bottom-up fabrication of ultra-large self-assembled nanosheets in solution, as well as a novel system for fundamental studies on 2D self-assembly of polymers.
68

Synthesis of silica-polymer hybrid particles via controlled radical polymerization in aqueous dispersed media / Synthèse de particules hybrides silice-polymère par polyméristaion radicalaire contrôlée en milieu aqueux dispersé

Qiao, Xiaoguang 20 December 2013 (has links)
Des polymères à base de méthacrylate de poly(oxyde d'éthylène) (PEOMA) avec des chaînes pendantes PEO (Mn = 300 ou 950 g mol-1) ou des copolymères de PEOMA300 et d'acide méthacrylique (AMA) ont été synthétisés par polymérisation radicalaire contrôlée par les nitroxydes en utilisant une alkoxyamine (BlocBuilder®) comme amorceur en présence de SG1 et d'une faible quantité de styrène. Les copolymères à base de PEOMA300 et d'AMA sont thermo- et pH-sensibles. Les deux types de macroalkoxyamines ont été utilisés pour amorcer la copolymérisation en émulsion du méthacrylate de n-butyle et du styrène et former, par auto-assemblage induit par la polymérisation, des particules composées de copolymères à blocs amphiphiles, en absence ou présence de particules de silice. En absence de silice, des particules stabilisées de façon stérique ou électrostérique ont été formées. La polymérisation présente les caractéristiques d'une polymérisation contrôlée avec néanmoins la formation d'une faible proportion de chaînes mortes. L'effet du pH, de la force ionique et de la nature ou de la concentration des macroalkoxyamines sur la cinétique de polymérisation et la morphologie des particules a été étudié, et des sphères, des vésicules ou des nanofibres ont été obtenues. Les macroalkoxyamines à base de PEO s'adsorbent sur la silice via la formation de liaisons hydrogène entre les chaînes PEO et les groupes silanol. La synthèse de copolymères à blocs en surface de la silice a conduit à la formation de particules hybrides de différentes morphologies (bonhomme de neige, multipodes, framboise, coeur-écorce, têtard, mille pattes) liées à la taille de la silice, au pH et à la nature du macroamorceur / Water-soluble brush-type polymers composed of poly(ethylene)oxide methacrylate (PEOMA) units with PEO side groups of various chain lengths (Mn = 300 and 950 g mol-1) or of PEOMA300 with methacrylic acid (MAA) were synthesized by nitroxide-mediated polymerization using an alkoxyamine initiator (BlocBuilder®) and SG1 nitroxide in the presence of a low amount of styrene. The PEOMA300-MAA based copolymers showed a dual temperature/pH response. The two series of macroalkoxyamines were used in aqueous emulsion copolymerization of nbutyl methacrylate and styrene leading to the formation of particles composed of amphiphilic block copolymers through polymerization-induced self-assembly, in both the absence and presence of silica. The experiments performed in the absence of silica particles resulted in the formation of sterically or electrosterically stabilized latexes. The polymerization exhibited all the features of a controlled system with however the presence of a small proportion of dead chains. The effect of pH value, ionic strength and type and concentration of the macroalkoxyamine initiator on polymerization kinetics and latex morphologies was investigated. Depending on the reaction conditions, spherical particles, vesicles or nanofibers were successfully prepared. The PEO-based macroalkoxyamines were shown to adsorb on the silica surface via hydrogen bond interaction between PEO and the silanol groups. This enabled block copolymers to be generated in situ on the silica surface leading to hybrid particles with snowman, raspberry, daisy, core-shell, “tadpole-” and “centipede-” like morphologies depending on the silica particle size, pH value and type of macroinitiator
69

Ultra-large sheet formation by 1D to 2D hierarchical self-assembly of a “rod–coil” graft copolymer with a polyphenylene backbone

Huang, Yinjuan, Yuan, Rui, Xu, Fugui, Mai, Yiyong, Feng, Xinliang, Yan, Deyue 17 July 2017 (has links)
This communication reports a unique ultra-large sheet formation through hierarchical self-assembly of a rod–coil graft copolymer containing a rigid polyphenylene backbone and flexible poly(ethylene oxide) (PEO) side chains. The hierarchical self-assembly process involved a distinctive morphological transition of 1D helical to 2D superstructures. The graft copolymer offers a new chance for the challenging bottom-up fabrication of ultra-large self-assembled nanosheets in solution, as well as a novel system for fundamental studies on 2D self-assembly of polymers.
70

Multidimensional Mass Spectrometry Studies on Amphiphilic Polymer Blends and Cross-Linked Networks

O'Neill, Jason Michael 08 July 2021 (has links)
No description available.

Page generated in 0.115 seconds