Spelling suggestions: "subject:"polyamide6"" "subject:"polyamide46""
51 |
Polyamide 6/silica hybrid materials by a coupled polymerization reactionKaßner, Lysann, Nagel, Kevin, Grützner, R.-E., Korb, Marcus, Rüffer, Tobias, Lang, Heinrich, Spange, Stefan 15 February 2016 (has links)
Polyamide 6/SiO2 hybrid materials were produced by a coupled polymerization reaction of three monomeric components namely 1,1′,1′′,1′′′-silanetetrayltetrakis-(azepan-2-one) (Si(ε-CL)4), 6-aminocaproic acid (ε-ACA) and ε-caprolactam (ε-CL) within one process. Si(ε-CL)4 together with ε-ACA has been found suitable as a precursor monomer for the silica and PA6 components. The accurate adjustment of the molar ratio of both components, as well as the combination of the overall process for producing the polyamide 6/SiO2 hybrid material with the hydrolytic ring opening polymerization of ε-caprolactam is of great importance to achieve homogeneous products with a low extractable content. Water in comparison with ε-ACA has been found unsuitable as an oxygen source to produce uniformly distributed silica. The procedure was carried out in a commercial laboratory autoclave at 8 bar initial pressure. The molecular structure and morphology of the hybrid materials have been investigated by solid state 29Si and 13C NMR spectroscopy, DSC and FTIR spectroscopy and electron microscopy measurements. / Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
52 |
Modelling and Evaluation of the Methods for Compression Testing of Thermoplastics / Modellering och utvärdering av metoder för kompressionsprovning av termoplasterItani, Abdul Rahman January 2021 (has links)
The application of thermoplastics as load-carrying components in furniture applications is an attractive prospect at IKEA. Thermoplastics can be used instead of metal where advanced geometries and aesthetics are considered. In this thesis work in solid mechanics, it is of interest to investigate different test setups proposed in the literature for compression testing of thermoplastics while taking into account the complex stress fields induced in the test samples during the compression test. The simulations have showed that the main cause of complex stress fields in compression test specimens is the presence of friction between the specimen and the machine heads. Friction prevents perfect Poisson contractions during the test which shifts the orientation of the local stress tensors from the direction of loading. Out of the shapes investigated in this thesis, it has been concluded that cube-shaped specimens were the most suitable to utilize in compression tests. The results were based on exploiting measures that pertain to accuracy and robustness parameters within stress and strain. Furthermore, manufacturing impact and ease of test measurements were considered. / Användningen av termoplaster som lastbärande komponenter i möbelapplikationer har ökat under de senaste åren inom IKEA. Då det förutom att vara estetiskt tilltalande för hela möbler är främsta användningen i komponenter som har mer komplicerade geometrier. I detta examensarbete i hållfasthetslära är det av intresse att undersöka olika provkroppar vilket föreslås i litteratur för kompressionsprovning av termoplaster med hänsyn till de komplexa spänningstillstånden som orsakas under provning. Simuleringarna har påvisat de komplexa spänningstillstånd i kompressionsprov som uppkommer på grund av friktion mellan provstaven och grepen. Friktion förhindrar perfekt tvärkontraktion, vilket förändrar orienteringen av de lokala spänningstensorerna från belastningsriktningen, vilket är enaxlig. Utifrån de former som undersöktes i detta examensarbete blev slutsatsen att kubformade provkroppar var de mest lämpliga att använda i kompressionsprovning. Resultaten baserades på att utnyttja åtgärder som avser noggrannhetsparametrar inom spänning och töjning men även tillverknings och provmätningens lätthet.
|
53 |
Stickstoffhaltige Monomere zur Herstellung von HybridmaterialienKaßner, Lysann 24 June 2015 (has links) (PDF)
In der vorliegenden Arbeit wurden stickstoffhaltige Monomere ausgehend von aromatischen Aminen oder Lactamen durch Umsetzung mit Chlorsilanen synthetisiert. Die so erhaltenen Derivate wurden mit Hilfe spektroskopischer und thermischer Analysenmethoden umfassend charakterisiert.
Auf Basis der stickstoffhaltigen Monomere wurden über unterschiedliche Synthesestrategien organisch-anorganische, nanostrukturierte Hybridmaterialien hergestellt.
Durch die thermisch induzierte Zwillingspolymerisation der Monomere 2,2‘-Spirobi[3,4-dihydro-1H-1,3,2-benzodiazasilin] und 1,1’,4,4‘-Tetrahydro-2,2‘-spirobi[benzo[d][1,3,2]-oxazasilin] gelang es, Hybridmaterialien bestehend aus Polyanilin-Formaldehyd-Harzen und Polysilazanen bzw. Siliciumdioxid unter Variation der Reaktionstemperatur herzustellen. Die Untersuchung der entstandenen Materialien erfolgte mittels spektroskopischer Methoden.
Die Lactam-Monomere wurden durch die Zugabe von Aminocarbonsäuren zu Polyamid 6/SiO2- bzw. Polysiloxan-Kompositen umgesetzt. Hier stand die Ermittlung der molekularen Struktur, wie auch die Bestimmung des thermischen Verhaltens und der Homogenität der Materialien im Vordergrund. Es konnte gezeigt werden, dass die Synthese der thermoplastischen Kompositmaterialien auch in vergrößertem Maßstab reproduzierbar ist und die Produkte zudem zu Folien extrudierbar sind. / In the present work nitrogen-containing monomers have been synthesized by reactions of silicon tetrachloride with amines or lactames and were characterized by different spectroscopic and thermal analysis methods.
The twin monomers 2,2‘-spirobi[3,4-dihydro-1H-1,3,2-benzodiazasiline] and 1,1’,4,4‘-tetrahydro-2,2‘-spirobi[benzo[d][1,3,2]¬oxazasiline] can be converted to hybrid materials containing polyaniline-formaldehyde resins and polysilazane or SiO2 by thermal induced twin polymerization under variation of the reaction temperature. The obtained nano composites were investigated by spectroscopic methods and electron microscopy.
The lactam containing monomers were polymerized to polyamide 6/SiO2-composites by addition of aminocarbonic acids and -caprolactam. The analysis of the molecular structure as well as the investigation of the thermal behavior and the homogeneity of materials was emphasized. It could be shown, that the synthesis can be performed reproducible. Furthermore, it is possible to extrude the thermoplastic composite materials to films.
|
54 |
Stickstoffhaltige Monomere zur Herstellung von HybridmaterialienKaßner, Lysann 05 June 2015 (has links)
In der vorliegenden Arbeit wurden stickstoffhaltige Monomere ausgehend von aromatischen Aminen oder Lactamen durch Umsetzung mit Chlorsilanen synthetisiert. Die so erhaltenen Derivate wurden mit Hilfe spektroskopischer und thermischer Analysenmethoden umfassend charakterisiert.
Auf Basis der stickstoffhaltigen Monomere wurden über unterschiedliche Synthesestrategien organisch-anorganische, nanostrukturierte Hybridmaterialien hergestellt.
Durch die thermisch induzierte Zwillingspolymerisation der Monomere 2,2‘-Spirobi[3,4-dihydro-1H-1,3,2-benzodiazasilin] und 1,1’,4,4‘-Tetrahydro-2,2‘-spirobi[benzo[d][1,3,2]-oxazasilin] gelang es, Hybridmaterialien bestehend aus Polyanilin-Formaldehyd-Harzen und Polysilazanen bzw. Siliciumdioxid unter Variation der Reaktionstemperatur herzustellen. Die Untersuchung der entstandenen Materialien erfolgte mittels spektroskopischer Methoden.
Die Lactam-Monomere wurden durch die Zugabe von Aminocarbonsäuren zu Polyamid 6/SiO2- bzw. Polysiloxan-Kompositen umgesetzt. Hier stand die Ermittlung der molekularen Struktur, wie auch die Bestimmung des thermischen Verhaltens und der Homogenität der Materialien im Vordergrund. Es konnte gezeigt werden, dass die Synthese der thermoplastischen Kompositmaterialien auch in vergrößertem Maßstab reproduzierbar ist und die Produkte zudem zu Folien extrudierbar sind. / In the present work nitrogen-containing monomers have been synthesized by reactions of silicon tetrachloride with amines or lactames and were characterized by different spectroscopic and thermal analysis methods.
The twin monomers 2,2‘-spirobi[3,4-dihydro-1H-1,3,2-benzodiazasiline] and 1,1’,4,4‘-tetrahydro-2,2‘-spirobi[benzo[d][1,3,2]¬oxazasiline] can be converted to hybrid materials containing polyaniline-formaldehyde resins and polysilazane or SiO2 by thermal induced twin polymerization under variation of the reaction temperature. The obtained nano composites were investigated by spectroscopic methods and electron microscopy.
The lactam containing monomers were polymerized to polyamide 6/SiO2-composites by addition of aminocarbonic acids and -caprolactam. The analysis of the molecular structure as well as the investigation of the thermal behavior and the homogeneity of materials was emphasized. It could be shown, that the synthesis can be performed reproducible. Furthermore, it is possible to extrude the thermoplastic composite materials to films.
|
55 |
Zusammenhang zwischen Struktur der Metalloberfläche und Verbundfestigkeit am Beispiel thermisch gefügter Thermoplast-Metall-VerbundeSaborowski, Erik 31 January 2023 (has links)
Das Ziel dieser Arbeit besteht in der Erforschung des Zusammenhangs zwischen der Struktur der Metalloberfläche und der Verbundfestigkeit von thermisch gefügten Thermoplast-Metall-Verbunden. Dazu wird für die Haftungsmechanismen Stoff-, Kraft- und Formschluss an einem Minimalbeispiel rechnerisch gezeigt, dass verschiedene Oberflächenmerkmale (wahre Oberfläche, Strukturdichte, Aspektverhältnis, Hinterschnitte, Substrukturen) mit der Verbundfestigkeit in Verbindung stehen. Basierend darauf werden Oberflächenkenngrößen (standardisierte Rauheitsparameter, fraktale Dimension) gewählt, die die haftungsfördernden Strukturmerkmale möglichst umfassend einbeziehen. Daraus werden Hypothesen abgeleitet, die die Prognostizierbarkeit der Verbundfestigkeit aus Oberflächenkenngrößen für Thermoplast-Metall-Verbunde postulieren. Die experimentelle Überprüfung erfolgt an Aluminium im Verbund mit Polyamid 6 bzw. Polypropylen in Rohrtorsions-, Rohrzug- sowie Zugscherversuchen. Die Einstellung der Oberflächenstruktur des Aluminiums erfolgt durch mechanisches Strahlen, alkalisches Ätzen, thermisches Spritzen sowie Laserstrukturieren. Die Erfassung der Oberflächenstruktur erfolgt taktil sowie aus Querschliffaufnahmen. Die Höhe der Verbundfestigkeit kann anhand der Oberflächenstruktur erklärt und teilweise mit hoher Korrelation quantitativ in Verbindung gebracht werden. Bei taktiler Messung verhindert jedoch eine unzureichende Erfassung bestimmter Strukturmerkmale eine exakte Abbildung der tatsächlichen Oberflächenstruktur. Bei der Erfassung der Oberflächenstruktur aus Querschliffaufnahmen stellt die erreichbare Bildauflösung und -qualität einen limitierenden Faktor dar. Ebenso können aus der Oberflächenstruktur keine individuellen, strukturspezifischen Versagensmechanismen abgeleitet werden.:Inhaltsverzeichnis 5
Abbildungsverzeichnis 9
Tabellenverzeichnis 14
Abkürzungsverzeichnis 16
Symbolverzeichnis 17
1 Motivation 20
2 Stand der Wissenschaft und Technik 22
2.1 Verwendete Begriffe 22
2.2 Verbundwerkstoffe und Werkstoffverbunde 22
2.2.1 Faser-Kunststoff-Verbunde 24
2.2.2 Polymer-Metall-Verbunde 25
2.3 Fügen von Polymer-Metall-Verbunden 27
2.3.1 In-Mold Assembly 28
2.3.2 Kleben 28
2.3.3 Montage 29
2.3.4 Thermisches Fügen 31
2.4 Prüfung der Verbundfestigkeit 34
2.4.1 Prüfkörpergeometrien 34
2.4.2 Beständigkeit gegen Umwelteinflüsse 36
2.5 Verfahren zur Vorbehandlung der Metalloberfläche 38
2.5.1 Mechanisches Strahlen 39
2.5.2 Laserstrukturieren 40
2.5.3 Chemische und elektrochemische Verfahren 43
2.5.4 Beschichten 43
2.5.5 Weitere Verfahren 44
3 Zusammenhang zwischen Oberflächenstruktur und Verbundfestigkeit 46
3.1 Haftungsmechanismen 47
3.1.1 Stoffschluss 48
3.1.2 Kraftschluss 50
3.1.3 Formschluss 51
3.1.4 Skalenabhängigkeit 53
3.1.5 Eigenspannungen 54
3.1.6 Folgerungen 54
3.2 Charakterisierung der Oberflächenstruktur und Korrelation mit der Verbundfestigkeit 55
3.2.1 Standardisierte Rauheitsparameter 56
3.2.2 Fraktale Dimension 58
3.2.3 Anwendungsbeispiel 59
4 Zielstellung 62
4.1 Folgerungen aus dem Stand der Wissenschaft und Technik 62
4.2 Forschungshypothesen 63
5 Experimentelle Vorgehensweise 64
5.1 Charakterisierung der Ausgangswerkstoffe 64
5.2 Vorbehandlung der Metalloberflächen 67
5.2.1 Mechanisches Strahlen und alkalisches Ätzen 67
5.2.2 Thermisches Spritzen 68
5.2.3 Laserstrukturieren 68
5.3 Charakterisierung der Oberflächenstruktur 69
5.4 Mechanische Verbundprüfung 71
5.5 Verwendeter Fügeprozess 73
5.6 Statistische Betrachtung 75
6 Ergebnisse und Diskussion 77
6.1 Verbundfestigkeit in Abhängigkeit von der Oberflächenvorbehandlung 77
6.1.1 Rohrproben 77
6.1.1.1 Oberflächencharakteristika und Benetzung 77
6.1.1.2 Verbundfestigkeit und Korrelation mit Oberflächenkennwerten 81
6.1.1.3 Bruchflächenanalyse 85
6.1.2 Zugscherproben 90
6.1.2.1 Oberflächencharakteristika und Benetzung 90
6.1.2.2 Verbundfestigkeit und Korrelation mit den Oberflächenkennwerten 91
6.1.2.3 Bruchflächenanalyse 93
6.1.3 Ergebnisdiskussion 95
6.2 Verbundfestigkeit in Abhängigkeit von der Skalierung 97
6.2.1 Oberflächencharakteristika und Benetzung 97
6.2.2 Verbundfestigkeit und Korrelation mit Oberflächenkennwerten 102
6.2.3 Bruchflächenanalyse 102
6.2.4 Ergebnissdiskussion 106
7 Zusammenfassung und Folgerungen 108
8 Ausblick 112
Literaturverzeichnis 115
Anhang 129 / The aim of this work is to investigate the relationship between the structure of the metal surface and the compound strength of thermally joined thermoplastic-metal compounds. For this purpose, equations are derived for the adhesion mechanisms of material, force and form closure using a minimal example, which link various surface characteristics (true surface, structure density, aspect ratio, undercuts, substructures) with the compound strength. Based on this, surface parameters (standardized roughness parameters, fractal dimension) are chosen that incorporate the adhesion-promoting structural features as comprehensively as possible. From this, hypotheses are derived that postulate the predictability of compound strength from surface parameters for thermoplastic-metal composites. Experimental verification is carried out on aluminum in compounds with polyamide 6 or polypropylene in hollow cylinder torsion tests, hollow cylinder tensile tests as well as tensile shear tests. The surface of the aluminum is structured by mechanical blasting, alkaline etching, thermal spraying and laser structuring. The surface structure is recorded tactilely and from transverse micrographs. The height of the compound strength can be explained on the basis of surface structure and, in part, quantitatively related with high correlation. However, in the case of tactile measurement, nondetection of certain structural features prevents accurate mapping of the actual surface structure. When recording the surface structure from cross-section images, the achievable image resolution and quality is the limiting factor. Likewise, no individual, structure-specific failure mechanisms can be derived from the surface structure.:Inhaltsverzeichnis 5
Abbildungsverzeichnis 9
Tabellenverzeichnis 14
Abkürzungsverzeichnis 16
Symbolverzeichnis 17
1 Motivation 20
2 Stand der Wissenschaft und Technik 22
2.1 Verwendete Begriffe 22
2.2 Verbundwerkstoffe und Werkstoffverbunde 22
2.2.1 Faser-Kunststoff-Verbunde 24
2.2.2 Polymer-Metall-Verbunde 25
2.3 Fügen von Polymer-Metall-Verbunden 27
2.3.1 In-Mold Assembly 28
2.3.2 Kleben 28
2.3.3 Montage 29
2.3.4 Thermisches Fügen 31
2.4 Prüfung der Verbundfestigkeit 34
2.4.1 Prüfkörpergeometrien 34
2.4.2 Beständigkeit gegen Umwelteinflüsse 36
2.5 Verfahren zur Vorbehandlung der Metalloberfläche 38
2.5.1 Mechanisches Strahlen 39
2.5.2 Laserstrukturieren 40
2.5.3 Chemische und elektrochemische Verfahren 43
2.5.4 Beschichten 43
2.5.5 Weitere Verfahren 44
3 Zusammenhang zwischen Oberflächenstruktur und Verbundfestigkeit 46
3.1 Haftungsmechanismen 47
3.1.1 Stoffschluss 48
3.1.2 Kraftschluss 50
3.1.3 Formschluss 51
3.1.4 Skalenabhängigkeit 53
3.1.5 Eigenspannungen 54
3.1.6 Folgerungen 54
3.2 Charakterisierung der Oberflächenstruktur und Korrelation mit der Verbundfestigkeit 55
3.2.1 Standardisierte Rauheitsparameter 56
3.2.2 Fraktale Dimension 58
3.2.3 Anwendungsbeispiel 59
4 Zielstellung 62
4.1 Folgerungen aus dem Stand der Wissenschaft und Technik 62
4.2 Forschungshypothesen 63
5 Experimentelle Vorgehensweise 64
5.1 Charakterisierung der Ausgangswerkstoffe 64
5.2 Vorbehandlung der Metalloberflächen 67
5.2.1 Mechanisches Strahlen und alkalisches Ätzen 67
5.2.2 Thermisches Spritzen 68
5.2.3 Laserstrukturieren 68
5.3 Charakterisierung der Oberflächenstruktur 69
5.4 Mechanische Verbundprüfung 71
5.5 Verwendeter Fügeprozess 73
5.6 Statistische Betrachtung 75
6 Ergebnisse und Diskussion 77
6.1 Verbundfestigkeit in Abhängigkeit von der Oberflächenvorbehandlung 77
6.1.1 Rohrproben 77
6.1.1.1 Oberflächencharakteristika und Benetzung 77
6.1.1.2 Verbundfestigkeit und Korrelation mit Oberflächenkennwerten 81
6.1.1.3 Bruchflächenanalyse 85
6.1.2 Zugscherproben 90
6.1.2.1 Oberflächencharakteristika und Benetzung 90
6.1.2.2 Verbundfestigkeit und Korrelation mit den Oberflächenkennwerten 91
6.1.2.3 Bruchflächenanalyse 93
6.1.3 Ergebnisdiskussion 95
6.2 Verbundfestigkeit in Abhängigkeit von der Skalierung 97
6.2.1 Oberflächencharakteristika und Benetzung 97
6.2.2 Verbundfestigkeit und Korrelation mit Oberflächenkennwerten 102
6.2.3 Bruchflächenanalyse 102
6.2.4 Ergebnissdiskussion 106
7 Zusammenfassung und Folgerungen 108
8 Ausblick 112
Literaturverzeichnis 115
Anhang 129
|
Page generated in 0.0689 seconds