• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 39
  • 11
  • 6
  • 3
  • Tagged with
  • 102
  • 27
  • 26
  • 20
  • 12
  • 12
  • 12
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Vliv acidobazických rovnováh na asociační chování polyelektrolytovů / Effect of acid-base equilibria on the association behaviour of polyelectrolytes

Staňo, Roman January 2020 (has links)
Title: Effect of acid-base equilibria on the association behaviour of polyelec- trolytes Author: Roman Staňo Department: Department of physical and macromolecular chemistry Supervisor: RNDr. Peter Košovan, Ph.D., Department of physical and macro- molecular chemistry Abstract: Macromolecules bearing charged monomeric units are omnipresent in the nature. Living systems utilize complex mechanisms to regulate the charge on biomacromolecules, hence controlling their structure or activity. Recently, there has been a surge in the preparation of bioinspired macromolecular mate- rials, such as drug delivery systems or self-healing hydrogels, possessing a high degree of responsivity to the external stimuli, such as pH. However, the fundamen- tal understanding of pH-based charge regulation in both natural and synthetic systems seems to be lacking, presumably because of the deficiency of suitable theoretical models and computational methods. Herein, we used coarse-grained simulations to shed light on the underyling physical principles of the relation between the pH, ionization, multivalency and structure of macromolecules. We presented a novel model of complex coacervates, and used it to describe phase equilibria and ion partitioning in such systems. Next, we explored the effects of multivalent ions and charged...
82

Příprava a vlastnosti stavebních bloků speciálních polymerů / Preparation and properties of building blocks of specialty polymers

Šichová, Kristýna January 2014 (has links)
This Diploma Thesis presents results obtained by solution of two partial projects: a) Preparation of monomers from renewable sources using metathesis and tandem hydrogenation catalyzed with ruthenium compounds - project solved during my Erasmus stay at the Université de Rennes 1 in France; b) Preparation and properties of ,-bis(tpy)quarterthiophene oligomers carrying ionic side groups as oligomonomers for polyelectrolyte conjugated dynamers - project solved at the Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague. Project a): Self-metathesis of 1,2-epoxyhex-5-ene (but-3-enyloxirane) and its cross-metathesis with methyl acrylate and acrylonitrile catalyzed with ruthenium compounds as well as tandem design of these metatheses and consecutive hydrogenation of their products by gaseous hydrogen have been optimized. The following influences have been studied and tuned: (i) type of the catalyst (Grubbs, Hoveyda, Zhan) and its concentration and method of dosing, (ii) concentration of reactants and additives, (iii) type of solvent, and (iv) reaction temperature. Reactions were monitored by the GC, GC and MS methods and the products were characterized by the NMR method. Methyl 6,7-epoxyheptanoate (methyl 5-oxiranylpentanoate) obtained by the tandem...
83

Polyelektrolytbeschichtung von Mikrokapseln (PEMC)

Garbers, Eike 29 August 2006 (has links)
Polyelektrolytmikrokapseln (PEMC) stellen ein neuartiges System künstlicher Zellen dar. Durch Einbringen von z.B. Hämoglobin in solche PEMC können sie als  künstliche Erythrozyten den Gastransport im Organismus unterstützen bzw. übernehmen. Es muss jedoch berücksichtigt werden, dass jede Zelle des Säugtierorganismus zur Aufrechterhaltung ihrer Funktion Enzyme benötigt, die ihre Stoffwechselfunktionen katalysieren. Um sich der Lösung dieses Problems bei der Entwicklung eines künstlichen Erythrozyten schrittweise zu nähern, wurde als Modellenzym Trypsin ausgewählt. Es wurden Polyelektrolytmikrokapseln (PEMC) auf der Basis von Erythrozyten durch Selbstassemblierung von Polynatriumstyrensuphonat (PSS) und Polyallylamino-hydrochlorid (PAH) hergestellt ((PSS/PAH)2PSS), und anschliessend nach der Layer-by-Layer Methode (LbL) alternierend mit Trypsin und den Polyelektrolyten (PE) PSS, Alginat oder Dextransulphat weiterbeschichtet. Der Schichtenaufbau wurde durch Zellelektrophorese, konfokale Laserscanning-mikroskopie (CLSM), Durchflusszytometrie (FACS) und photometrische Proteinbestimmung charakterisiert und quantifiziert. Die Aktivität des an der PEMC-Membran immobilisierten Enzyms wurde untersucht und mit der Aktivität freien Trypsins verglichen. Weiterhin wurden pH-Profile von freiem Enzym mit denen des immobilisierten Trypsins verglichen. Der Schichtaufbau aus Trypsin und den unterschiedlichen Polyelektrolyten wurde anhand der Änderung der elektrophoretischen Mobilität beim Aufbringen jeder Schicht, sowie durch die Zunahme der photometrisch bestimmten Proteinmenge pro PEMC charakterisiert. Außerdem wurde Trypsin mit Fluoreszeinisothiozyanat (FITC) markiert und in den Beschichtungsserien die Zunahme der flowzytometrisch bestimmten Fluoreszenz-Intensität mit jeder aufgebrachten FITC-Trypsin Schicht beobachtet. Die Aktivität des an den PEMC immobilisierten Trypsins beträgt etwa 30% der Aktivität freien Trypsins gleicher Konzentration. Es konnte gezeigt werden, dass sich Trypsin im Rahmen eines Schichtaufbaus nach der LbL-Technologie in die Membran der verwendeten PEMC einbringen lässt. Dabei behält das Enzym einen Teil seiner Funktion. / Artificial cells are not only used to study the biological processes of living cells, they also serve as micro reactors to provide certain functions in the organism. Polyelectrolyte microcapsules (PEMC) represent a new approach to artificial cell studies. When filled with hemoglobin, PEMC are able to perform the erythrocyte gas exchange. This work shows the general possibility of integrating enzymes into the PEMC membrane. PEMC were composed using the layer-by-layer (l-b-l) technique. Glutaraldehyde stabilized human red blood cells (RBC) served as templates and were coated with five layers poly(styrene sulfonate) (PSS) and poly(allylaminehydrochloride) (PAH). After decomposition of the RBC by sodium hypochlorite, the PEMC were coated with ten layer pairs of trypsin and either PSS or alginate. The trypsin layer growth was followed performing measurements by cell electrophoresis, confocal laser scanning microscopy (CLSM), flow cytometry (FACS) and protein determination according to Lowry after each adsorption step. Results showed a continuous layer buildup for both polyelectrolytes and no desorption of trypsin. The amount of immobilized enzyme was larger for the coating series with trypsin/PSS compared to that with trypsin/alginat. This was concluded as a result of PSS/trypsin complex formation. Normalizing the enzym activity to the amount of adsorbed trypsin no significant differences between the activity of PSS-PEMC and alginate-PEMC were found. Further experiments prove that PSS inhibits the enzyme activity and alginat does not.
84

Charged polymer-macroion complexes

Boroudjerdi, Hoda January 2005 (has links)
This work explores the equilibrium structure and thermodynamic phase behavior of complexes formed by charged polymer chains (polyelectrolytes) and oppositely charged spheres (macroions). Polyelectrolyte-macroion complexes form a common pattern in soft-matter physics, chemistry and biology, and enter in numerous technological applications as well. From a fundamental point of view, such complexes are interesting in that they combine the subtle interplay between electrostatic interactions and elastic as well as entropic effects due to conformational changes of the polymer chain, giving rise to a wide range of structural properties. This forms the central theme of theoretical studies presented in this thesis, which concentrate on a number of different problems involving strongly coupled complexes, i.e. complexes that are characterized by a large adsorption energy and small chain fluctuations. <br><br> In the first part, a global analysis of the structural phase behavior of a single polyelectrolyte-macroion complex is presented based on a dimensionless representation, yielding results that cover a wide range of realistic system parameters. Emphasize is made on the interplay between the effects due to the polyelectrolytes chain length, salt concentration and the macroion charge as well as the mechanical chain persistence length. The results are summarized into generic phase diagrams characterizing the wrapping-dewrapping behavior of a polyelectrolyte chain on a macroion. A fully wrapped chain state is typically obtained at intermediate salt concentrations and chain lengths, where the amount of polyelectrolyte charge adsorbed on the macroion typically exceeds the bare macroion charge leading thus to a highly overcharged complex. <br><br> Perhaps the most striking features occur when a single long polyelectrolyte chain is complexed with many oppositely charged spheres. In biology, such complexes form between DNA (which carries the cell's genetic information) and small oppositely charged histone proteins serving as an efficient mechanism for packing a huge amount of DNA into the micron-size cell nucleus in eucaryotic cells. The resultant complex fiber, known as the chromatin fiber, appears with a diameter of 30~nm under physiological conditions. Recent experiments indicate a zig-zag spatial arrangement for individual DNA-histone complexes (nucleosome core particles) along the chromatin fiber. A numerical method is introduced in this thesis based on a simple generic chain-sphere cell model that enables one to investigate the mechanism of fiber formation on a systematic level by incorporating electrostatic and elastic contributions. As will be shown, stable complex fibers exhibit an impressive variety of structures including zig-zag, solenoidal and beads-on-a-string patterns, depending on system parameters such as salt concentration, sphere charge as well as the chain contour length (per sphere). The present results predict fibers of compact zig-zag structure within the physiologically relevant regime with a diameter of about 30~nm, when DNA-histone parameters are adopted. <br><br> In the next part, a numerical method is developed in order to investigate the role of thermal fluctuations on the structure and thermodynamic phase behavior of polyelectrolyte-macroion complexes. This is based on a saddle-point approximation, which allows to describe the experimentally observed reaction (or complexation) equilibrium in a dilute solution of polyelectrolytes and macroions on a systematic level. This equilibrium is determined by the entropy loss a single polyelectrolyte chain suffers as it binds to an oppositely charged macroion. This latter quantity can be calculated from the spectrum of polyelectrolyte fluctuations around a macroion, which is determined by means of a normal-mode analysis. Thereby, a stability phase diagram is obtained, which exhibits qualitative agreement with experimental findings. <br><br> At elevated complex concentrations, one needs to account for the inter-complex interactions as well. It will be shown that at small separations, complexes undergo structural changes in such a way that positive patches from one complex match up with negative patches on the other. Furthermore, one of the polyelectrolyte chains may bridge between the two complexes. These mechanisms lead to a strong inter-complex attraction. As a result, the second virial coefficient associated with the inter-complex interaction becomes negative at intermediate salt concentrations in qualitative agreement with recent experiments on solutions of nucleosome core particles. / In dieser Arbeit werden Gleichgewichtsstrukturen und die thermodynamischen Phasen von Komplexen aus geladenen Polymeren (Polyelektrolyten) und entgegengesetzt geladenen Kugeln (Makroionen) untersucht. Polyelektrolyt-Makroion-Komplexe bilden ein grundlegendes und wiederkehrendes Prinzip in der Physik weicher Materie sowie in Chemie und Biologie. In zahlreichen technologischen Prozessen finden sich ebenfalls Anwendungsbeispiele für derartige Komplexe. Zusätzlich zu ihrem häufigen Auftreten sind sie aufgrund ihrer Vielfalt von strukturellen Eigenschaften von grundlegendem Interesse. Diese Vielfalt wird durch ein Zusammenspiel von elektrostatischen Wechselwirkungen sowie elastischen und entropischen Effekten aufgrund von Konformationsänderungen in der Polymerkette bedingt und bildet das zentrale Thema der theoretischen Studien, die mit dieser Arbeit vorgelegt werden. Verschiedene Strukturen und Prozesse, die stark gekoppelte Komplexe beinhalten - das sind solche, für die eine hohe Adsorptionsenergie und geringe Fluktuationen in den Polymerketten charakteristisch sind -, bilden das Hauptthema der Arbeit. <br><br> Basierend auf einer dimensionslosen Darstellung wird im ersten Teil der Arbeit in einer umfassenden Analyse das strukturelle Phasenverhalten einzelner Polyelektrolyt-Makroion-Komplexe behandelt. Der Schwerpunkt wird hier auf das Wechselspiel zwischen Effekten aufgrund der Polyelektrolytkettenlänge, ihrer mechanischen Persistenzlänge, der Salzkonzentration und der Ladung des Makroions gelegt. Die Ergebnisse werden in allgemeinen Phasendiagrammen zusammengestellt, das das Aufwickeln-Abwickeln-Verhalten der Polyelektrolytkette auf einem Makroion beschreibt. Ein Zustand mit komplett aufgewickelter Kette tritt typischerweise bei mittleren Salzkonzentrationen und Kettenlängen auf; häufig ist hier die auf dem Makroion adsorbierte Gesamtladung des Polyelektrolyts größ er als die Ladung des nackten Makroions, d.h. es findet in hohem Grad Ladungsinversion statt. <br><br> Äußerst bemerkenswerte Eigenschaften treten auf, wenn eine einzelne lange Polyelektrolytkette viele, ihr entgegengesetzt geladene Kugeln komplexiert. In biologischen Systemen findet man solche Komplexe zwischen DNS, die die genetische Information einer Zelle trägt, und kleinen, entgegengesetzt geladenen Histonproteinen. Diese Komplexe dienen als effizienter Mechanismus, die groß e Menge an DNS im Mikrometer-groß en Zellkern eukaryotischer Zellen zu komprimieren. Die dadurch erhaltene komplexe Faser, eine Chromatinfaser, hat unter physiologischen Bedingungen einen Durchmesser von nur etwa 30~nm. Neue Experimente haben gezeigt, dass eine räumliche Zickzack-Anordnung einzelner DNA-Histon-Komplexe entlang der Chromatinfaser vorliegt. In der hier vorgelegten Arbeit wird eine numerische Methode vorgestellt, die auf einem einfachen Ketten-Kugel-Zell-Modell basiert und die die systematische Untersuchung des Mechnismus zur Faserbildung ermöglicht, wobei sowohl elektrostatische als auch elastische Wechselwirkungen berücksichtigt werden. Es wird gezeigt, dass stabile Komplexfasern in Abhängigkeit von der Salzkonzentration, der Kugelladung und der Kettenkonturlänge eine Vielfalt von Strukturen aufweisen, darunter Zickzack-, Solenoid- und Perlenkettenformen. Für physiologisch relevante Bedingungen werden mit dieser Methode für DNA-Histon-Komplexe Fasern kompakter Zickzack-Struktur mit einem Durchmesser von etwa 30~nm erhalten. <br><br> Im folgenden Teil wird eine numerische Methode entwickelt, um den Einfluss thermischer Fluktuationen auf Struktur und thermodynamisches Phasenverhalten der Polyelektrolyt-Makroion-Komplexe zu untersuchen. Basierend auf der Sattelpunktsnäherung werden die experimentell beobachteten Reaktionsgleichgewichte in verdünnten Lösungen von Polyelektrolyten und Makroionen systematisch beschrieben. Das Gleichgewicht ist durch einen Verlust an Entropie für die einzelne Polyelektrolytkette durch die Bindung an das entgegengesetzt geladene Makroion gekennzeichnet. Diese Größ e wurde aus dem Spektrum der Polyelektrolytfluktuationen um das Makroion erhalten und mittels einer Analyse der Normalmoden berechnet. Hierüber wird ein Phasendiagramm zur Stabilität der Komplexe erhalten, das qualitativ gute Übereinstimmungen mit experimentellen Ergebnissen aufweist. <br><br> Bei höheren Komplexkonzentrationen müssen auch die Wechselwirkungen zwischen den Komplexen berücksichtigt werden. Es wird gezeigt, dass sich die Struktur der Komplexe bei kleinen Abständen so ändert, dass positiv geladene Bereiche eines Komplexes mit negativ geladenen auf einem Nachbarkomplex räumlich korrelieren. Weiterhin können einzelne Polyelektrolytketten als verbrückendes Element zwischen zwei Komplexen dienen. Dieser Mechanismus führt zu starker effektiver Anziehung zwischen den Komplexen. In Übereinstimmung mit kürzlich durchgeführten Experimenten ist als Folge davon der zweite Virialkoeffizient der Wechselwirkung zwischen Komplexen bei mittleren Salzkonzentrationen negativ.
85

Generation and Characterisation of Nanostructures from Single Adsorbed Polyelectrolyte Molecules / Herstellung und Charakterisierung von Nanostrukturen aus einzelnen adsorbierten Polyelektrolyt-Molekülen

Gorodyska, Ganna 20 September 2005 (has links) (PDF)
Visualization and study of reconformation of polyelectrolytes (PEs) of different architecture is of great fundamental and practical interest. Verification of theoretical predictions with experiment is of essential importance. On the other hand, a wide range of bottom-up techniques based on patterning of matter on the length scale of a few nanometers have been recently developed. Particularly interesting is the possibility of using self-assembled single molecule structures as templates for the deposition of inorganic matter, in particular metals. Synthetic &amp;quot;normal-sized&amp;quot; polymers of various architecture, like poly-2-vinylpyridine (P2VP) or polystyrene-poly(2-vynil pyridine) P2VP7-PS7 star-like block copolymer, adsorbed on solid substrates have been visualized for the first time with molecular resolution by AFM in different conformation. This finding allowed us to study largely discussed problem, a coil-to-globule transition of PEs. It was found that PE molecules undergo conformational transitions from stretched worm-like coil to compact globule via set of necklace-like globules, as the fraction of charged monomers decreases with an increase of pH and ionic strength. These results are in good agreement with recently developed DRO theory for weakly charged flexible PEs in poor solvent. The size of the deposited single molecules correlates very well with molecular dimensions in solution obtained in light scattering experiments. PE single molecules of various architectures was mineralized in different conformations that constitutes the route to nanoparticles with desired shape (including wire-shape and star-shaped), size, and composition (including metallic, magnetic and semiconductive nanoparticles). It was shown that molecular details of the adsorbed linear flexible PE molecules determine the dimensions of the nanostructures after metallization and that observed sizes are consistent with the decoration of single molecules with nanoclusters. Thus those metallized nanoparticles (cluster assembles) reflect the conformation of original adsorbed PE molecules. The dimensions of the obtained nanowires are significantly smaller than those previously reported. All of these features are of the potential benefit in applications for nanodevices. Metallization of the PS7-P2VP7 improves AFM resolution due to the selective deposition of Pd clusters along the P2VP chains. For the first time, the number of the P2VP second generation arms of the heteroarm block-copolymer was directly counted in the single molecule AFM experiment. Simple contrasting procedure was developed to improve AFM visualization of positively charged polymer chains deposited on the substrates of relatively high roughness. This method allows increasing the thickness of the resulting structures up to 10 nm, and, consequently, provide visualization of polymer chains on rough surfaces. This innovation is important for the development of single molecule experiments with polymer chains. The reaction of HCF-anion could be used for recognition of polycation molecules, when polycations, polyanions and neutral molecules coexist on the surface. Recently, the study was strongly restricted to atomically smooth surfaces. The contrasting procedure extends the range of substrates (Si-wafers, chemically modified or patterned Si-wafers, polished glasses, polymer films, etc) appropriate for the experiments. Thus, polymer single molecules can be considered not only as representative of the ensemble molecules, but also as individual nanoscale objects which can be used for future nanotechnology for the fabrication of single molecule electronic devices. Also these findings are important from fundamental point of view, since developed approach can be successfully applied for investigation of various &amp;quot;classical&amp;quot; problems in polymer science, such as polymer reconformation, interpolyelectrolyte complex formation, polymer diffusion, adsorption, etc.
86

Self-assembly and functionality of polymer bottle brushes on surfaces

Raguzin, Ivan 16 April 2015 (has links) (PDF)
In the past decade there has been a growing interest in one-dimensional (1D) nanostructures, such as nanowires, nanotubes and nanorods, owing to their size-dependent optical and electronic properties and their potential application as building blocks, interconnects and functional components for assembling nanodevices. One of the ways to obtain such architectures is a template-directed synthesis which is practically a straightforward route to 1D nanostructures. In this approach, the template simply serves as a scaffold, within (or around) which a different material is generated in situ and shaped into a nanostructure with its morphology complementary to that of the template. It is generally accepted that template-directed synthesis provides a simple, high-throughput, and cost-effective procedure that also allows the complex topology present on the surface of a template to be duplicated in a single step. In the current work, utilization of the molecular bottle brushes as templates is proposed for the fabrication of conductive nanorods. Their non-spherical macromolecular geometries and lengths up to a few hundred nanometers allow the application of these structures in nanowire synthesis. The variety of molecular bottle brush architectures and their composition enables the adjustment of appropriate conditions for the preparation of conductive materials. Moreover, the ability of the brushes to assemble on a surface under certain conditions provides their usage as building blocks for the preparation of complex conductive networks. Here, the preparation, characterization, and applications of molecular bottle brushes are discussed. Two main goals were pursued. First, to deepen the knowledge in the synthesis of molecular bottle brushes, and to investigate their behavior on the surface. Second, to explore the application of the brushes as templates or building blocks for the formation of conductive nanowires. For the purpose, new ways of molecular brush synthesis by using the “grafting to” approach had to be developed. It was found that the reaction of nucleophilic addition based on pentofluorophenol chemistry and a coupling “click chemistry” reaction can be used to fabricate molecular brushes. Both methods showed efficient results and demonstrated high reactivity of the backbone with the end groups of the side chains. The “click chemistry” approach, however, demonstrated better results considering higher thicknesses of the brushes and, therefore, higher grafting density of the side chains. The “grafting to” together with the “grafting from” methods are very powerful synthetic tools, which can be used in the fabrication of any desired molecular bottle brush architectures. Additionally, complexation of oppositely charged bottle polymer brushes at a single-molecule level using AFM and CryoTEM was experimentally investigated. It was found that polyelectrolyte complexes have “scrambled-egg” morphology, where oppositely charged polymer chains are not oriented parallel to each other but cross each other. Furthermore, molecular bottle brushes were used as templates for the preparation of conductive nanowires. Three approaches for their fabrication were tested. It was found that brushes could easily be covered with various conductive materials, for example conductive polymers or metals. It was showed that for very small, tiny objects as molecular bottle brushes, one can use FIB in order to build up electrodes at its ends. The electrodes could be sputtered with an accuracy of 500 nm and further be used in the determination of the conductivity. The molecular bottle brushes covered with palladium showed the resistance of 50 MΩ, which, regarding the size of the brush, corresponds to a conductivity of one single molecule being ~1 S*cm-1. The obtained conductivity data were in good correlation with the data found in literature. We believe that the molecular bottle brushes have high potential applicability for the building of complex conductive networks. Future refinement of the synthetic methods, combined with improvements in structuring and positioning of objects at the nanoscale, could lead to their implementation in the construction of high-performance electronic devices.
87

Time-dependent chemo-electromechanical behavior of hydrogelbased structures

Leichsenring, Peter, Wallmersperger, Thomas 13 August 2020 (has links)
Charged hydrogels are ionic polymer gels and belong to the class of smart materials. These gels are multiphasic materials which consist of a solid phase, a fluid phase and an ionic phase. Due to the presence of bound charges these materials are stimuli-responsive to electrical or chemical loads. The application of electrical or chemical stimuli as well as mechanical loads lead to a viscoelastic response. On the macroscopic scale, the response is governed by a local reversible release or absorption of water which, in turn, leads to a local decrease or increase of mass and a respective volume change. Furthermore, the chemo-electro-mechanical equilibrium of a hydrogel depends on the chemical composition of the gel and the surrounding solution bath. Due to the presence of bound charges in the hydrogel, this system can be understood as an osmotic cell where differences in the concentration of mobile ions in the gel and solution domain lead to an osmotic pressure difference. In the present work, a continuum-based numerical model is presented in order to describe the time-dependent swelling behavior of hydrogels. The numerical model is based on the Theory of Porous Media and captures the fluid-solid, fluid-ion and ion-ion interactions. As a direct consequence of the chemo-electro-mechanical equilibrium, the corresponding boundary conditions are defined following the equilibrium conditions. For the interaction of the hydrogel with surrounding mechanical structures, also respective jump condtions are formulated. Finaly, numerical results of the time-dependent behavior of a hydrogel-based chemo-sensor will be presented.
88

Generation and Characterisation of Nanostructures from Single Adsorbed Polyelectrolyte Molecules

Gorodyska, Ganna 09 September 2005 (has links)
Visualization and study of reconformation of polyelectrolytes (PEs) of different architecture is of great fundamental and practical interest. Verification of theoretical predictions with experiment is of essential importance. On the other hand, a wide range of bottom-up techniques based on patterning of matter on the length scale of a few nanometers have been recently developed. Particularly interesting is the possibility of using self-assembled single molecule structures as templates for the deposition of inorganic matter, in particular metals. Synthetic &amp;quot;normal-sized&amp;quot; polymers of various architecture, like poly-2-vinylpyridine (P2VP) or polystyrene-poly(2-vynil pyridine) P2VP7-PS7 star-like block copolymer, adsorbed on solid substrates have been visualized for the first time with molecular resolution by AFM in different conformation. This finding allowed us to study largely discussed problem, a coil-to-globule transition of PEs. It was found that PE molecules undergo conformational transitions from stretched worm-like coil to compact globule via set of necklace-like globules, as the fraction of charged monomers decreases with an increase of pH and ionic strength. These results are in good agreement with recently developed DRO theory for weakly charged flexible PEs in poor solvent. The size of the deposited single molecules correlates very well with molecular dimensions in solution obtained in light scattering experiments. PE single molecules of various architectures was mineralized in different conformations that constitutes the route to nanoparticles with desired shape (including wire-shape and star-shaped), size, and composition (including metallic, magnetic and semiconductive nanoparticles). It was shown that molecular details of the adsorbed linear flexible PE molecules determine the dimensions of the nanostructures after metallization and that observed sizes are consistent with the decoration of single molecules with nanoclusters. Thus those metallized nanoparticles (cluster assembles) reflect the conformation of original adsorbed PE molecules. The dimensions of the obtained nanowires are significantly smaller than those previously reported. All of these features are of the potential benefit in applications for nanodevices. Metallization of the PS7-P2VP7 improves AFM resolution due to the selective deposition of Pd clusters along the P2VP chains. For the first time, the number of the P2VP second generation arms of the heteroarm block-copolymer was directly counted in the single molecule AFM experiment. Simple contrasting procedure was developed to improve AFM visualization of positively charged polymer chains deposited on the substrates of relatively high roughness. This method allows increasing the thickness of the resulting structures up to 10 nm, and, consequently, provide visualization of polymer chains on rough surfaces. This innovation is important for the development of single molecule experiments with polymer chains. The reaction of HCF-anion could be used for recognition of polycation molecules, when polycations, polyanions and neutral molecules coexist on the surface. Recently, the study was strongly restricted to atomically smooth surfaces. The contrasting procedure extends the range of substrates (Si-wafers, chemically modified or patterned Si-wafers, polished glasses, polymer films, etc) appropriate for the experiments. Thus, polymer single molecules can be considered not only as representative of the ensemble molecules, but also as individual nanoscale objects which can be used for future nanotechnology for the fabrication of single molecule electronic devices. Also these findings are important from fundamental point of view, since developed approach can be successfully applied for investigation of various &amp;quot;classical&amp;quot; problems in polymer science, such as polymer reconformation, interpolyelectrolyte complex formation, polymer diffusion, adsorption, etc.
89

Studium bariérových a transportních vlastností vybraných polyelektrolytů v hydrogelových matricích pomocí difúzních technik / Study of barrier and transport properties of polyelectrolytes using diffusion techniques in hydrogels

Valentová, Kristýna January 2017 (has links)
This diploma thesis was focused on study of barrier and transport properties of selected polyelectrolytes in hydrogel matrices by using diffusion techniques. The study of these properties was performed in horizontal diffusion cells where is observed the change in diffusion probe concentration over time. Diffusion experiments were performed on an agarose hydrogel with the addition of alginate, hyaluronic acid, polystyrene sulfonate, humic acids and as a model probe rhodamine 6G was used. Important parts of this thesis are also the methods which characterize the substances and hydrogel matrices such as rheology and potentiometric titration. The main aim of this diploma thesis was to investigate the effect of interactions between passing model dye (rhodamine 6G) and the appropriate gel (agarose + polyelectrolyte) on the fundamental diffusion parameters (effective diffusion coefficient, lag time, etc.).
90

Synthesewege zu neuen Hybridmaterialien aus stickstoffhaltigen Monomeren und silikatischen Partikeln

Meyer, Torsten 23 November 2001 (has links)
Die vorliegende Arbeit beschreibt verschiedene Synthesewege zur Oberflächenmodifizierung silikatischer Partikel mit 1,3-Divinylimidazolidin-2-on (Bisvinylethylenharnstoff, BVH) und Vinylformamid (VFA), z. B. radikalische Pfropfpolymerisationen („grafting from/to“) und radikalisch vernetzende Copolymerisation von VFA mit BVH. Es werden Versuche zur sauren Verseifung der Formamidgruppen und zur Charakterisierung der gebildeten Polyvinylamin (PVAm)/Kieselgel Hybridmaterialien vorgestellt. Die Eigenschaften der PVAm/Kieselgel Hybridmaterialien sind je nach zugrundeliegendem Polymerisationsprozeß verschieden und werden mittels 13 C{1 H}-CP-MAS-NMR-Spektroskopie, Zetapotentialmessungen, SANS, Quelltests und rheologischen Methoden untersucht. Die kationische Oberflächenpolymerisation von BVH unter Verwendung des Initiatorsystems Triphenylmethylchlorid/Kieselgel wird ausführlich erläutert. Die Struktur der resultierenden Hybridmaterialien wird mittels quantitativer Elementaranalyse, 13 C{1 H}-CP-MAS-NMR-, DRIFT- und ESCA- Spektroskopie, sowie TGA und Zetapotentialmessungen untersucht. Die Anwendung der Poly-BVH/KG Hybridmaterialien zur Adsorption von Schwermetallsalzen wird am Beispiel der Adsorption von CuCl2, CoCl2, CoI2 und FeCl3 beschrieben. Dabei werden der Einfluß des Polymergehaltes der Hybride und des Metallanions auf die adsorbierte Sättigungsstoffmenge diskutiert. Eine quantitative Beschreibung der Adsorption nach dem LANGMUIR-Modell wird gegeben, welche in einem Vorschlag für die Wechselwirkung zwischen Hybridmaterial und Metallsalz mündet. Mit der Adsorption von Goldnanoclustern an Poly-BVH/Kieselgel Hybriden wird eine weitere Möglichkeit der Modifizierung und des Aufbaus von funktionellen Multischichtsystemen vorgestellt.

Page generated in 0.047 seconds