• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A utilização do software GeoGebra no estudo dos pontos notáveis do triângulo

Jesus, Vitor Rios de 08 June 2018 (has links)
Submitted by Vitor Rios de Jesus (profvitorrios@gmail.com) on 2018-07-29T14:42:25Z No. of bitstreams: 1 VITOR RIOS DE JESUS.pdf: 7908835 bytes, checksum: fc1cda2425c7cd7128f599f99854530f (MD5) / Approved for entry into archive by NUBIA OLIVEIRA (nubia.marilia@ufba.br) on 2018-07-30T18:23:31Z (GMT) No. of bitstreams: 1 VITOR RIOS DE JESUS.pdf: 7908835 bytes, checksum: fc1cda2425c7cd7128f599f99854530f (MD5) / Made available in DSpace on 2018-07-30T18:23:31Z (GMT). No. of bitstreams: 1 VITOR RIOS DE JESUS.pdf: 7908835 bytes, checksum: fc1cda2425c7cd7128f599f99854530f (MD5) / Este trabalho propõe estudar os principais pontos notáveis do triângulo (baricentro, incentro, ortocentro e circuncentro), por meio do uso do software GeoGebra. Deste modo, algumas atividades foram escolhidas e resolvidas com o uso do GeoGebra. Sugere-se que estas atividades sejam aplicadas por professores da educação básica em turmas do ensino médio. Vale ressaltar que as atividades foram aplicadas em duas turmas do 2° ano do ensino médio integrado à educação profi ssional, no IFBA / Campus de Salvador. Foram aplicados questionários aos 39 estudantes que participaram da pesquisa, bem como a 2 docentes do Departamento de Matemática do IFBA / Campus de Salvador que avaliaram o capítulo de Aplicações desta dissertação. Os resultados obtidos com a metodologia aplicada foram satisfatórios e foi possível comprovar que o uso do software GeoGebra como recurso didático propicia a aprendizagem dos estudantes. / This paper proposes to study the main notable points of the triangle (barycenter, incenter, orthocenter and circumcenter), through the use of GeoGebra software. So, some activities were chosen and solved with the use of GeoGebra. It is suggested that these activities be applied by teachers of basic education in high school classes.It is noteworthy that the activities were applied in two classes of the second year of high school integrated to vocational education, at IFBA / Campus of Salvador. Questionnaires were applied to 39 students who took place in the research, as well as 2 teachers from the Mathematics Department of IFBA / Campus of Salvador who evaluated the Applications chapter of this dissertation. The results obtained with the applied methodology were satisfactory and it was possible to prove that the use of GeoGebra software as a didactic resource facilitates students' learning. Key Words: Notable Points of the Triangle; GeoGebra; Didactic Resource.
2

Caracterização e localização dos pontos notáveis do triângulo / Characterization and location of the notable points of the triangle

Neves, Elvis Donizeti 01 February 2013 (has links)
O ensino de Matemática é, de modo geral, orientado pelos processos contidos nos livros didáticos. Sendo assim, a organização dos conceitos matemáticos nesses livros deveria ser capaz de permitir ao leitor interpretar a Matemática em sua essência, admitindo o estabelecimento de relações entre os conteúdos. No entanto, o que geralmente se observa nos materiais é um aglomerado de definições e conceitos desconexos que conduzem o leitor a dificuldades de aprendizado na área. Por essa razão, a presente dissertação teve o objetivo principal de localizar, além de caracterizar, os pontos notáveis do triângulo: o centróide ou baricentro (G), o ortocentro (H), o circuncentro (O), o centro (N) da circunferência de nove pontos, os três ex-centros das circunferências ex-inscritas, as projeções ortogonais dos vértices sobre os lados opostos e os pontos de tangência da circunferência inscrita e ex-inscrita. Quatro abordagens são apresentadas em busca de tal objetivo: a-) apresentar a geometria do triângulo segundo técnicas de percepção visual; b-) caracterizar alguns pontos notáveis do triângulo, como pontos de máximo ou de mínimo de funções com as demonstrações utilizando desigualdade de Cauchy-Schwarz e entre média aritmética e geométrica; c-) utilizar um sistema cartesiano adequado para o cálculo das abscissas e ordenadas do centróide (G), do ortocentro (H) e do circuncentro (O) de um triângulo; d-) utilizar os números complexos para a completa localização de todos os pontos notáveis do triângulo além de apresentar a equação da reta de Euler, o incentro (I) e os três excentros IA, IB e IC localizados em fórmulas simples. A dissertação finaliza com o Teorema de Feuerbach, apresentado com uma prova elementar, mostrando que a circunferência de nove pontos e a circunferência inscrita são tangentes internamente e que a circunferência dos nove pontos é tangente exteriormente a cada uma das três ex circunferências e o Teorema de Napoleão, no qual os baricentros de triângulos equiláteros, construídos a partir dos lados de um triângulo qualquer, formam um outro triângulo equilátero. Comparando as várias abordagens da dissertação, a conclusão é a de que a compreensão dos números complexos paradoxalmente simplifica a resolução de problemas de geometria plana e a solução de equações polinomiais. Assim, acredita-se que uma maior exploração desse conteúdo no ensino da Matemática poderia tornar o aprendizado mais atraente e simplificado / The teaching of Mathematics is generally guided by the procedures contained in the textbooks. Thus, the organization of the mathematical concepts in these books should be able to allow the reader to interpret the Mathematics in its essence, admitting the establishment of relationships between the contents. However, what is observed in the materials is a conglomeration of disparate definitions and concepts that lead the reader to learning difficulties in the area. For this reason, this work aimed to locate and characterize the notable points of the triangle: the centroid or barycenter (G), the orthocenter (H), the circumcenter (O), the center (N) of circumference of nine points, three former centers of the ex-inscribed circles, orthogonal projections of the vertices on the opposite sides and the points of tangency of the inscribed and the ex-inscribed circumference. Four approaches are presented to achieve these goals: a-) to introduce the geometry of the triangle using visual perception techniques, b-) to characterize some notable points of the triangle, as points of maximum or minimum of functions with the demonstrations using the Cauchy-Schwarz inequality and between the arithmetic and geometric mean;-c) to use a suitable Cartesian system for calculating the abscissas and ordinates of the centroid (G), of orthocenter (H) and of the circumcenter (O) of a triangle;-d) to use complex numbers for the complete location of all notable points of the triangle, beyond depicting the Euler equation of the line, the incenter (I) and the three former centers IA, IB and IC located in simple formulas. The work is concluded with the Feuerbach\'s Theorem, presented with an elementary proof, showing that the nine-point circle and the incircle is tangent internally and that the circumference of the nine points is externally tangent to each of the three ex-inscribed circles and the Napoleons Theorem, in which the barycenters of equilateral triangles, constructed from the sides of any triangle, form another equilateral triangle. Comparing the approaches detached hitherto, the conclusion is that the understanding of complex numbers paradoxically simplifies troubleshooting of plane geometry and the solution of polynomial equations. Thus, it is believed that further exploration of this content in mathematics education could make learning more attractive and simplified
3

Caracterização e localização dos pontos notáveis do triângulo / Characterization and location of the notable points of the triangle

Elvis Donizeti Neves 01 February 2013 (has links)
O ensino de Matemática é, de modo geral, orientado pelos processos contidos nos livros didáticos. Sendo assim, a organização dos conceitos matemáticos nesses livros deveria ser capaz de permitir ao leitor interpretar a Matemática em sua essência, admitindo o estabelecimento de relações entre os conteúdos. No entanto, o que geralmente se observa nos materiais é um aglomerado de definições e conceitos desconexos que conduzem o leitor a dificuldades de aprendizado na área. Por essa razão, a presente dissertação teve o objetivo principal de localizar, além de caracterizar, os pontos notáveis do triângulo: o centróide ou baricentro (G), o ortocentro (H), o circuncentro (O), o centro (N) da circunferência de nove pontos, os três ex-centros das circunferências ex-inscritas, as projeções ortogonais dos vértices sobre os lados opostos e os pontos de tangência da circunferência inscrita e ex-inscrita. Quatro abordagens são apresentadas em busca de tal objetivo: a-) apresentar a geometria do triângulo segundo técnicas de percepção visual; b-) caracterizar alguns pontos notáveis do triângulo, como pontos de máximo ou de mínimo de funções com as demonstrações utilizando desigualdade de Cauchy-Schwarz e entre média aritmética e geométrica; c-) utilizar um sistema cartesiano adequado para o cálculo das abscissas e ordenadas do centróide (G), do ortocentro (H) e do circuncentro (O) de um triângulo; d-) utilizar os números complexos para a completa localização de todos os pontos notáveis do triângulo além de apresentar a equação da reta de Euler, o incentro (I) e os três excentros IA, IB e IC localizados em fórmulas simples. A dissertação finaliza com o Teorema de Feuerbach, apresentado com uma prova elementar, mostrando que a circunferência de nove pontos e a circunferência inscrita são tangentes internamente e que a circunferência dos nove pontos é tangente exteriormente a cada uma das três ex circunferências e o Teorema de Napoleão, no qual os baricentros de triângulos equiláteros, construídos a partir dos lados de um triângulo qualquer, formam um outro triângulo equilátero. Comparando as várias abordagens da dissertação, a conclusão é a de que a compreensão dos números complexos paradoxalmente simplifica a resolução de problemas de geometria plana e a solução de equações polinomiais. Assim, acredita-se que uma maior exploração desse conteúdo no ensino da Matemática poderia tornar o aprendizado mais atraente e simplificado / The teaching of Mathematics is generally guided by the procedures contained in the textbooks. Thus, the organization of the mathematical concepts in these books should be able to allow the reader to interpret the Mathematics in its essence, admitting the establishment of relationships between the contents. However, what is observed in the materials is a conglomeration of disparate definitions and concepts that lead the reader to learning difficulties in the area. For this reason, this work aimed to locate and characterize the notable points of the triangle: the centroid or barycenter (G), the orthocenter (H), the circumcenter (O), the center (N) of circumference of nine points, three former centers of the ex-inscribed circles, orthogonal projections of the vertices on the opposite sides and the points of tangency of the inscribed and the ex-inscribed circumference. Four approaches are presented to achieve these goals: a-) to introduce the geometry of the triangle using visual perception techniques, b-) to characterize some notable points of the triangle, as points of maximum or minimum of functions with the demonstrations using the Cauchy-Schwarz inequality and between the arithmetic and geometric mean;-c) to use a suitable Cartesian system for calculating the abscissas and ordinates of the centroid (G), of orthocenter (H) and of the circumcenter (O) of a triangle;-d) to use complex numbers for the complete location of all notable points of the triangle, beyond depicting the Euler equation of the line, the incenter (I) and the three former centers IA, IB and IC located in simple formulas. The work is concluded with the Feuerbach\'s Theorem, presented with an elementary proof, showing that the nine-point circle and the incircle is tangent internally and that the circumference of the nine points is externally tangent to each of the three ex-inscribed circles and the Napoleons Theorem, in which the barycenters of equilateral triangles, constructed from the sides of any triangle, form another equilateral triangle. Comparing the approaches detached hitherto, the conclusion is that the understanding of complex numbers paradoxically simplifies troubleshooting of plane geometry and the solution of polynomial equations. Thus, it is believed that further exploration of this content in mathematics education could make learning more attractive and simplified
4

Pontos notáveis do triângulo: quantos você conhece?

Magalhães, Elton Jones da Silva 12 April 2013 (has links)
This thesis aims to show that the notable points of the triangles are not limited to Incentro, circumcenter, Baricentro and Orthocenter which are the best known. In fact, the Encyclopedia of Triangle Centers (ETC), see [5], features over five thousand notable points. Are points with several interesting properties as we will see throughout this work. In addition to the points already mentioned will also present the points of Feuerbach, the Lemoine point, the point Gergonne, the Nagel point, the Spieker point and the points of Fermat. Will be also presented some important theorems, among them we highlight the Ceva theorem that will be used to prove the existence of several points mentioned. We realize that it is a matter of understanding that can be easily inserted into the basic education. / A presente dissertação tem como objetivo mostrar que os pontos notáveis dos triângulos não se resumem ao Incentro, Circuncentro, Baricentro e ao Ortocentro que são os mais conhecidos. Na verdade, a Encyclopedia of Triangle Centers (ETC), ver [5], apresenta mais de cinco mil pontos notáveis. São pontos com várias propriedades interessantes como veremos ao longo deste trabalho. Além dos pontos já citados apresentaremos também os pontos de Feuerbach, o ponto de Lemoine, o ponto de Gergonne, o ponto de Nagel, o ponto de Spieker e os pontos de Fermat. Serão apresentados também alguns teoremas importantes, entre eles podemos destacar o Teorema de Ceva que será usado para provar a existência de vários pontos citados. Podemos perceber que é um assunto de fácil compreensão que pode ser inserido no ensino básico.

Page generated in 0.1076 seconds