• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 4
  • 2
  • 2
  • Tagged with
  • 27
  • 27
  • 18
  • 8
  • 8
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Characterization of Mitilysin Pores by Cryo-electron Microscopy

Novakovic, Vladimir January 2023 (has links)
Pore forming toxins (PFTs) are a large group of proteins found mainly in bacteria with some exceptions found in animals. They bind and form pores in their target membranes and form pores, which leads to cell death. Among these are cholesterol-dependent cytolysins (CDC), which require the presence of cholesterol to bind target membranes. Mitilysin (Mly), a protein of interest in this project, belongs to the CDC group of pore forming toxins. It is produced by the bacterium Streptococcus mitis, a pathogen closely related to Streptococcus pneumoniae, found in human oral cavity, which causes several diseases such as Viridans Group Streptococcal (VGS) toxic shock syndrome and endocarditis. Mly is a homologue of the toxin Pneumolysin, which is produced by S. pneumoniae. However, the mechanism of pore formation is not well known. The purpose of this project is to understand the mechanism of CDC pore formation, focusing on the key amino acid residues that are responsible for transitioning from Mly pre-pore to pore state. The findings will aid in the design of inhibitors of pore formation as potential anti-bacterial drug candidates. The major goal of the project was to determine the 3-dimensional (3D) structure of assembled Mly pore. Mly is expressed in E.coli and purified by Ni-NTA affinity chromatography. Pore formation is confirmed by a hemolysis assay and negative stain-transmission electron microscopy. Mly pores are vitrified, analyzed and imaged in a cryo-electron microscope. 2D images were processed to generate a 3D density map. However, our Mly pore 3D map was incomplete due to lack of 2D projection angles resulting from preferred orientation of pore particles during sample preparation. To overcome this problem, we aim to use DNA origami, which requires His-tagged Mly. We were able to determine that His-tagged Mly retains its pore formation ability.
12

Simultaneous optical and electrical recordings in horizontal lipid bilayers: Membrane dynamics and protein interactions

Honigmann, Alf 15 November 2010 (has links)
In this thesis the deployment of a methodological combination of two single molecule techniques, the planar bilayer technique and fluorescence fluctuation spectroscopy, is presented. The newly devised electro-optical setup will serve as a sophisticated model system for electrical excitable biological membranes. The expectation on a combined electro-optical setup is to be able to correlate the function of membrane channels (electrical activity) with its structural properties (fluorescence assays). The thesis is grouped into four chapters: A general introduction, providing the biological and methodological background, is followed by two studies on the application of the electro- optical setup in the field of membrane biophysics. In the first study the electrical and diffusion properties of planar bilayer membranes made of simple and ternary lipid mixtures are characterized. Additionally, the influence of temperature dependent lipid phase separation on the electrical activity of the ion channel gramicidin A is studied. The second study addresses the conformational changes of the pore-forming toxin Colicin A during membrane binding and ion channel formation. Finally, the potentials and the limitation of the presented setup are discussed.
13

The Importance of Listeriolysin O in Host Cell Invasion by <i>Listeria monocytogenes</i> and its Use in Vaccine Development

Phelps, Christopher 18 June 2019 (has links)
No description available.
14

Modeling Lysis Dynamcis Of Pore Forming Toxins And Determination Of Mechanical Properties Of Soft Materials

Vaidyanathan, M S 11 1900 (has links) (PDF)
Pore forming toxins are known for their ability to efficiently form transmembrane pores which eventually leads to cell lysis. PFTs have potential applications in devel-oping novel drug and gene delivery strategies. Although structural aspects of many pore forming toxins have been studied, very little is known about the dynamics and subsequent rupture mechanisms. In the first part of the thesis, a combined experimental and modeling study to understand the lytic action of Cytolysin A (ClyA) toxins on red blood cells (RBCs) has been presented. Lysis experiments are carried out on a 1% suspension of RBCs for different initial toxin concentrations ranging from 100 – 500 ng/ml and the extent of lysis is monitored spectrophotometrically. Using a mean field approach, we propose a non – equilibrium adsorption-reaction model to quantify the rate of pore formation on the cell surface. By analysing the model in a pre-lysis regime, the number of pores per RBC to initiate rupture was found to lie between 400 and 800. The time constants for pore formation are estimated to lie between 1-25 s and monomer conformation time scales were found to be 2-4 times greater than the oligomerization times. Using this model, we are able to predict the extent of cell lysis as a function of the initial toxin concentration. Various kinetic models for oligomerization mechanism have been explored. Irreversible sequential kinetic model has the best agreement with the available experimental data. Subsequent to the mean field approach, a population balance model was also formulated. The mechanics of cell rupture due to pore formation is poorly understood. Efforts to address this issue are concerned with understanding the changes in the membrane mechanical properties such as the modulus and tension in the presence of pores. The second part of the thesis is concerned with using atomic force microscopy to measure the mechanical properties of cells. We explore the possibility of employing tapping mode AFM (TM-AFM) to obtain the elastic modulus of soft samples. The dynamics of TM-AFM is modelled to predict the elastic modulus of soft samples, and predict optimal cantilever stiffness for soft biological samples. From experiments using TM-AFM on Nylon-6,6 the elastic modulus is predicted to lie between 2 and 5 GPa. For materials having elastic moduli in the range of 1– 20 GPa, the cantilever stiffness from simulations is found to lie in the range of 1 – 50 N/m. For soft biological samples, whose elastic moduli are in the range of 10-1000 kPa, a narrower range of cantilever stiffness (0.1 – 0.6 N/m), should be used.
15

Design of Minimal Ion Channels

Yuchi, Zhiguang January 2009 (has links)
<p> We developed some universal platforms to overexpress the minimal functional entities of ion channels. The modular property of ion channels have been demonstrated from many aspects, such as crystal structures, chimeric channel experiments and discovery of similar modules in distantly related protein families. Thus it should be feasible to express each module independent of other channel modules. The pore-forming module of ion channels has multiple important properties as selectivity, conductivity and drug-binding. If it can be overexpressed, it will provide valuable information about channel selectivity to different ions and structural bases for drug binding as well as important application in drug screening and rational drug design. </p> <p> To test this, we first used the model channel KcsA to identify the minimal requirements for a pore-forming domain to functionally exist independently. Chapter 2 of this thesis explains in detail how the wild type C-terminal cytoplasmic domain of KcsA functions. We found that this domain has dual function as pH-sensor and tetramerization domain, and it is essential for the expression of the pore-forming domain of KcsA. Once we knew the physiological role of the cytoplasmic domain, the scenario was set to answer the question of how to make it better for the application of structural and functional studies. </p> <p> In chapter 3 and chapter 4, we replaced the wild type C-terminal domain with non-native tetramerization domains. We identified the direct correlation between protein expression level and overall thermostability of pore-forming domains. The C-terminal tetramerization domains stabilize channels in a cooperative way and play a critical way in in vivo channel assembly. The selection of the linker between pore-forming domain and tetramerization domain, the splicing motif, and the handedness of C-terminal tetrameric coiled coils all affect channel expression level and stability. </p> <p> We applied our finding in KcsA to a wide range of ion channels in chapter 5, including voltage-gated potassium channels, Ca2+-gated potassium channels, inwardrectifying potassium channels, cyclic nucleotide-gated potassium channels and voltagegated sodium channels. We managed to express similar minimal structural modules from these more structurally complicated channels with the assistance of different cytoplasmic tetramerization domains. Several minimal channels expressed well and showed similar biophysical and functional property as the wild type channels. </p> <p> These studies demonstrate that the pore-forming modules of ion channels can be expressed independently while retaining the proper structure and drug-binding properties as their wild type predecessors when using our universal expression platform. The potential application in structural studies and drug-screening is promising. </p> / Thesis / Doctor of Philosophy (PhD)
16

Etude des régions d'insertion membranaire des protéines de la famille Bcl-2 et conception de "poropetides" anticancéreux / Study of membrane-active regions of Bcl-2 family proteins and development of anticancer "poropeptides"

Garcia Valero, Juan 18 February 2011 (has links)
Les protéines de la famille Bcl-2 sont des régulateurs-clés de l’apoptose (mort cellulaire), qui agissent en contrôlant la perméabilisation de la membrane mitochondriale externe par un processus encore mal connu. La dérégulation des membres de cette famille est souvent associée à la progression tumorale et à la résistance à la chimiothérapie. Notre projet a cherché à éclaircir le mode d’action de ces protéines en se focalisant sur les déterminants structuraux régissant leur interaction avec les membranes biologiques. Les connaissances glanées ont permis (i) de mieux comprendre les déterminants à l’origine de la divergence évolutive entre membres pro- et anti-apoptotiques de la famille Bcl-2 ; (ii) d’ouvrir la voie à la conception de ‘poropeptides’ conçus sur le modèle des hélices d’insertion membranaire des protéines Bcl-2, et qui pourraient être utilisés pour induire l’apoptose de cellules tumorales ou des cellules endothéliales entourant les tumeurs. / Bcl-2 family proteins, which include pro- and antiapoptotic members, positively or negatively regulate mitochondrial outer membrane permeabilization, i.e. a critical step in apoptosis. Over-expression of pro-survival members is associated with tumor progression and may be responsible for chemotherapy resistance. Detailed understanding of the precise mechanisms by which Bcl-2 family members control apoptosis is therefore of considerable therapeutic interest. The overall aim of our project was to delineate a structure-function relationship of Bcl-2 family proteins with emphasis on their membrane-active domains. This analysis has provided a basis (i) to elucidate the molecular mechanisms by which different Bcl-2 proteins evolved opposite functions ; (i) to develop a new generation of pore-forming peptides targeting the mitochondrial outer membrane that may be used to kill neoplastic or tumor endothelial cells.
17

Topologie a funkce transmembránové domény kolicinu U, bakterie Shigella boydii / Topology and function of the transmembrane domain of colicin U produced by Shigella boydii

Dolejšová, Tereza January 2015 (has links)
Colicin U is a protein produced by strains of bacterium Shigella boydii. It exhibits antibacterial activity against some bacterial strains Shigella and Escherichia. Based on sequence homology with colicins A, B and N, the colicin U is classified as a pore-forming colicin. Interaction of colicin U with attacked bacteria is ensured by three-step mechanism: 1) First colicin U interacts with surface receptors OmpA, OmpF and core of LPS. 2) Thereafter the colicin is translocated to periplasm through interaction with Tol proteins. 3) Finally colicin U interacts with the inner membrane of the attacked bacteria causing its depolarization. In this thesis I demonstrated pore-forming features of colicin U and further observed characteristics and properties of these pores. Using methods of measuring on black lipid membranes I determined a single channel conductance (19 pS), ion selectivity, the influence of various conditions on the behaviour of the pores. These findings, in many cases, correspond to the findings on other related colicins. Furthermore, I successfully determined the pore diameter of colicin U ( ≈ 0,8 nm). The next section of the thesis focuses on creation of single cysteine mutations of colicin U. Subsequently I produced five mutant variants of colicin U and verified their functionality so that...
18

Role segmentu 400-500 v biologické aktivitě adenylát cyklázového toxinu bakterie Bordetella pertussis / Role of the segment 400-500 in biological activity of Bordetella pertussis adenylate cyclase toxin

Suková, Anna January 2017 (has links)
The adenylate cyclase toxin-hemolysin (CyaA) plays a key role in virulence of the whooping cough agent Bordetella pertussis. It translocates an AC enzyme into cytosol of CD11b+ phagocytes and subverts their bactericidal functions by unregulated conversion of ATP to cAMP. In parallel, CyaA permeabilizes cellular membrane by forming cation-selective pores. The goal of my diploma thesis was an analysis of the mechanism of interaction of the segment linking the invasive adenylate cyclase domain and the RTX hemolysin moiety of CyaA with target membrane. Our data show that the segment linking the AC to the hydrophobic domain of CyaA is directly involved in the interaction of the toxin with the membrane and controls the formation of small cationt-selective pores. Our results generate new knowledge that will be of relevance to the entire field of toxin biology and will enable the design of improved CyaA- based vaccines. Keywords: Bordetella pertussis, adenylate cyclase toxin, membrane translocation, pore- forming activity, black lipid bilayers, liposomes
19

Roles of membrane vesicles in bacterial pathogenesis

Vdovikova, Svitlana January 2017 (has links)
The production of membranous vesicles is observed to occur among organisms from all domains of the tree of life spanning prokaryotes (bacteria, archaea) and eukaryotes (plants, animals and fungi). Bacterial release of membrane-derived vesicles (MVs) has been studied most extensively in cases of Gram-negative species and implicating their outer membrane in formation of extracellular MVs. However, recent studies focusing on Gram-positive bacteria have established that they also undergo MV formation. Membrane vesicles are released during normal bacterial growth, they are derived from the bacterial membrane(s) and may function as transporters of different proteins, DNA and RNA to the neighbouring bacteria or to the cells of a mammalian host. The transport of virulence factors in a condensed manner via MVs to the host cells presumably protects these proteins from degradation and, thereby, targets the host cells in a specific manner. The aim of my thesis is to investigate secretion of MV-associated virulence factors and to study interactions of MVs produced by two selected Gram-negative and Gram-positive bacteria, i.e. Vibrio cholerae and Listeria monocytogenes, with eukaryotic host cells. Depending on whether the bacterium acts as an extracellular or intracellular pathogen, MVs may be considered to have specific functions, which may lead to the different outcomes of MV-host interactions. V. cholerae transport systems for virulence factors include the Type VI secretion system and MVs (also referred to as the “Type 0” secretion system). We have identified that the biologically active form of PrtV protease in different V. cholerae serogroups is transported via MVs. PrtV protease is essential for V. cholerae environmental survival and protection from natural predator grazing. We demonstrated that PrtV is primarily translocated via the inner membrane to the periplasmic space, where it undergoes autoproteolysis, and the truncated version of PrtV protein is packaged inside the MVs and released from the surface of bacteria. MV-associated PrtV protease showed a contribution to bacterial resistance towards the antimicrobial peptide LL-37, thereby, enhancing bacterial survival by avoiding this innate immune defense of the host. We also studied another virulence factor of V. cholerae, the pore-forming toxin VCC, which was found to be transported by MVs. MV-associated VCC is biologically active and triggers an autophagic response in the target cells. We suggested that autophagy serves as a cellular defense mechanism against the MV-associated bacterial virulence factor of V. cholerae. Listeria monocytogenes is a Gram-positive intracellular and facultative anaerobic food-borne pathogen causing listeriosis. It causes only sporadic outbreaks in healthy individuals, however, it is dangerous for a fetus or newborn child, and for pregnant and immunocompromised people, leading to a deadly infection in one third of the cases. We have analyzed MVs produced by L. monocytogenes and their interaction with eukaryotic cells. Confocal microscopy analysis showed that MVs are internalized into HeLa and HEK293 cells and are accumulated in lysosomes. Moreover, L. monocytogenes produces MVs inside the host cells and even inside the phagosomes. We found that the major virulence factor of L. monocytogenes, the cholesterol-dependent pore-forming protein listeriolysin O (LLO), is entrapped inside the MVs and resides there in an oxidized inactive state. LLO is known to induce autophagy by making pores in the phagosomal membrane of targeted eukaryotic cells. In our studies, we have shown that MVs effectively abrogated autophagy induced by Torin1, by purified LLO or by another pore-forming toxin from V. cholerae. We also found that MVs promote bacterial intracellular survival inside mouse embryonic fibroblasts. In addition, MVs have been shown to have a strong protective activity against host cell necrosis initiated by pore-forming toxin. Taken together, these findings suggested that in vivo MVs production from L. monocytogenes might be a relevant strategy of bacteria to manipulate host responses and to promote bacterial survival inside the host cells.
20

Možnosti zvýšení užitných vlastností lehčeného cihlářského střepu / Possibilities of light weight brick body innovation

Fric, Jan January 2013 (has links)
This diploma thesis will discuss possibilities of using nanofibres to increase the strenght of the brick body, replacement of the current schrinkage reducing agent – quartz sand by stone dust, the use of flocculants as pore-forming agent and coloration of the body using iron trioxide.

Page generated in 0.0626 seconds