Spelling suggestions: "subject:"eportfolio byelection"" "subject:"eportfolio dielection""
221 |
Dynamic asset allocation over the life-cycle and the role of incomplete annuity markets /Stamos, Michael Zisis. January 2007 (has links) (PDF)
University, Diss.--Frankfurt (Main), 2007.
|
222 |
Logistikimmobilien : Optimierung des Investment- und Logistikerfolges /Mahler, Kilian. January 2008 (has links)
Zugl.: Regensburg, Universiẗat, Diss.
|
223 |
Real-financial interaction in contemporary models of AS-AD growth /Köper, Carsten. January 2003 (has links) (PDF)
Univ., Diss.--Bielefeld, 2002.
|
224 |
Optimal portfolios with stochastic interest rates and defaultable assets /Kraft, Holger. January 2004 (has links)
Univ., Diss.--Mainz, 2003. / Literaturverz. S. [165] - 170.
|
225 |
[en] SELECTION OF PORTFOLIOS OF OIL AND GAS PRODUCTION BY GENETIC ALGORITHMS / [pt] SELEÇÃO DE CARTEIRAS DE PROJETOS DE PRODUÇÃO DE PETRÓLEO E GÁS POR ALGORITMOS GENÉTICOSKARIN YANET SUPO GAVANCHO 27 November 2002 (has links)
[pt] Esta dissertação investiga um sistema de apoio à decisão
baseado em Algoritmos Genéticos e Simulação Monte Carlo
para a formação de carteiras de projetos de petróleo e
gás.
O objetivo do trabalho é avaliar o desempenho de
Algoritmos
Genéticos -AG- para selecionar projetos que formarão a
carteira. A construção de carteiras de projetos é um
problema de múltiplos objetivos, onde se deseja escolher
um
conjunto de projetos com perspectivas de lucro para
formar
uma carteira. O sistema emprega o Algoritmo Genético para
formação de carteiras de projetos. Em seguida, a
Simulação
de Monte Carlo é utilizada para obter a função de
distribuição do Valor Presente Líquido -VPL- da carteira
baseado nas distribuições dos projetos escolhidos. Por
último, avalia-se a carteira usando-se o método de
minimização de energia que busca o equilibro dos três
objetivos considerados. O problema consiste, basicamente,
em maximizar a média do VPL, que representa o retorno
esperado, minimizando-se o Desvio Padrão, que é a medida
de
risco, e maximizando-se o Percentil 90 -P90-, que
significa
a possibilidade de obter um maior lucro. Nos estudos de
casos são apresentados os resultados da aplicação do
sistema
para diferentes grupos de projetos, constituídos por 16,
18, 20 e 26 projetos, onde cada um deles tem
distribuições
teóricas do VPL definidas por funções: F, Normal e
Logarítmica, formadas por 500 dados. Os resultados
obtidos
mostram a eficiência do AG com a técnica de múltiplos
objetivos, na utilização para a otimização de carteiras
de projetos de investimento em petróleo e gás. / [en] This thesis investigates a system of support to the
decision based on Genetic Algorithms and Monte Carlo
Simulation for the creation of portfolio projects of oil
and gas. The objective of this work is to evaluate the
performance of Genetic Algorithms -GA- to select projects
that will form the portfolio. The portfolio construction of
projects is a problem of objective multiples, where it is
wishes to choose a set of projects with profit perspectives
to form a portfolio. The system uses the Genetic Algorithm
to create the portfolio formation of projects. After that,
the Monte Carlo Simulation is used to get the function of
distribution of the Net Present Value -NPV- of the
portfolio based on the distributions of the chosen projects.
Finally, the portfolio is evaluated portfolio by using
itself the method of minimizes energy for the three
considered objectives. The problem consists, basically, in
maximizing the average of the NPV which represents the
return expected, minimizing the Standard of Deviation,
which is the measure of the risk, and maximizing the
Percentile 90 -P90-, which means the possibility to get a
bigger profit. In the study of cases, it is presented the
results of the application of the system for different
groups of projects, consisting in 16, 18, 20 and 26
projects, where each project has theoretical distributions
of the NPV defined by functions: F, Normal and
Logarithmic, formed for 500 data. The gotten results show
the efficiency of the GA with the technique of objective
multiples, in the use of the optimization of the
portfolio projects oil and gas investment.
|
226 |
Dois ensaios em finanças / Option pricing under multiscale stochastic volatility / Idiosyncratic moments and the cross-section of stock returns in BrazilTessari, Cristina 22 March 2016 (has links)
Submitted by Cristina Tessari (tinatessari@gmail.com) on 2016-06-09T13:51:42Z
No. of bitstreams: 1
DissertationEPGE_CristinaTessari2016.pdf: 1264081 bytes, checksum: 14e65157457bfe8deea5353bb192a0af (MD5) / Approved for entry into archive by Marcia Bacha (marcia.bacha@fgv.br) on 2016-06-29T14:03:25Z (GMT) No. of bitstreams: 1
DissertationEPGE_CristinaTessari2016.pdf: 1264081 bytes, checksum: 14e65157457bfe8deea5353bb192a0af (MD5) / Approved for entry into archive by Marcia Bacha (marcia.bacha@fgv.br) on 2016-06-29T14:06:59Z (GMT) No. of bitstreams: 1
DissertationEPGE_CristinaTessari2016.pdf: 1264081 bytes, checksum: 14e65157457bfe8deea5353bb192a0af (MD5) / Made available in DSpace on 2016-06-29T14:07:23Z (GMT). No. of bitstreams: 1
DissertationEPGE_CristinaTessari2016.pdf: 1264081 bytes, checksum: 14e65157457bfe8deea5353bb192a0af (MD5)
Previous issue date: 2016-03-22 / We use Brazilian data to compute monthly idiosyncratic moments (expected skewness, realized skewness, and realized volatility) for equity returns and assess whether they are informative for the cross-section of future stock returns. Since there is evidence that lagged skewness alone does not adequately forecast skewness, we estimate a cross-sectional model of expected skewness that uses additional predictive variables. Then, we sort stocks each month according to their idiosyncratic moments, forming quintile portfolios. We find a negative relationship between higher idiosyncratic moments and next-month stock returns. The trading strategy that sells stocks in the top quintile of expected skewness and buys stocks in the bottom quintile generates a significant monthly return of about 120 basis points. Our results are robust across sample periods, portfolio weightings, and to Fama and French (1993)’s risk adjustment factors. Finally, we identify a return reversal of stocks with high idiosyncratic skewness. Specifically, stocks with high idiosyncratic skewness have high contemporaneous returns. That tends to reverse, resulting in negative abnormal returns in the following month. / In the first chapter, we test some stochastic volatility models using options on the S&P 500 index. First, we demonstrate the presence of a short time-scale, on the order of days, and a long time-scale, on the order of months, in the S&P 500 volatility process using the empirical structure function, or variogram. This result is consistent with findings of previous studies. The main contribution of our paper is to estimate the two time-scales in the volatility process simultaneously by using nonlinear weighted least-squares technique. To test the statistical significance of the rates of mean-reversion, we bootstrap pairs of residuals using the circular block bootstrap of Politis and Romano (1992). We choose the block-length according to the automatic procedure of Politis and White (2004). After that, we calculate a first-order correction to the Black-Scholes prices using three different first-order corrections: (i) a fast time scale correction; (ii) a slow time scale correction; and (iii) a multiscale (fast and slow) correction. To test the ability of our model to price options, we simulate options prices using five different specifications for the rates or mean-reversion. We did not find any evidence that these asymptotic models perform better, in terms of RMSE, than the Black-Scholes model. In the second chapter, we use Brazilian data to compute monthly idiosyncratic moments (expected skewness, realized skewness, and realized volatility) for equity returns and assess whether they are informative for the cross-section of future stock returns. Since there is evidence that lagged skewness alone does not adequately forecast skewness, we estimate a cross-sectional model of expected skewness that uses additional predictive variables. Then, we sort stocks each month according to their idiosyncratic moments, forming quintile portfolios. We find a negative relationship between higher idiosyncratic moments and next-month stock returns. The trading strategy that sells stocks in the top quintile of expected skewness and buys stocks in the bottom quintile generates a significant monthly return of about 120 basis points. Our results are robust across sample periods, portfolio weightings, and to Fama and French (1993)’s risk adjustment factors. Finally, we identify a return reversal of stocks with high idiosyncratic skewness. Specifically, stocks with high idiosyncratic skewness have high contemporaneous returns. That tends to reverse, resulting in negative abnormal returns in the following month.
|
227 |
Towards More Intuitive Frameworks For The Project Portfolio Selection ProblemJanuary 2018 (has links)
abstract: Project portfolio selection (PPS) is a significant problem faced by most organizations. How to best select the many innovative ideas that a company has developed to deploy in a proper and sustained manner with a balanced allocation of its resources over multiple time periods is one of vital importance to a company's goals. This dissertation details the steps involved in deploying a more intuitive portfolio selection framework that facilitates bringing analysts and management to a consensus on ongoing company efforts and buy into final decisions. A binary integer programming selection model that constructs an efficient frontier allows the evaluation of portfolios on many different criteria and allows decision makers (DM) to bring their experience and insight to the table when making a decision is discussed. A binary fractional integer program provides additional choices by optimizing portfolios on cost-benefit ratios over multiple time periods is also presented. By combining this framework with an `elimination by aspects' model of decision making, DMs evaluate portfolios on various objectives and ensure the selection of a portfolio most in line with their goals. By presenting a modeling framework to easily model a large number of project inter-dependencies and an evolutionary algorithm that is intelligently guided in the search for attractive portfolios by a beam search heuristic, practitioners are given a ready recipe to solve big problem instances to generate attractive project portfolios for their organizations. Finally, this dissertation attempts to address the problem of risk and uncertainty in project portfolio selection. After exploring the selection of portfolios based on trade-offs between a primary benefit and a primary cost, the third important dimension of uncertainty of outcome and the risk a decision maker is willing to take on in their quest to select the best portfolio for their organization is examined. / Dissertation/Thesis / Doctoral Dissertation Industrial Engineering 2018
|
228 |
Modelo de covari?ncia bayesiana para sele??o de protf?lios de investimentos / Modelo de covari?ncia bayesiana para sele??o de protf?lios de investimentosLima Junior, Melquiades Pereira de 21 December 2011 (has links)
Made available in DSpace on 2014-12-17T14:53:04Z (GMT). No. of bitstreams: 1
MelquiadesPLJ_DISSERT.pdf: 2472393 bytes, checksum: 59503f299bf1a82dcfc59bffce406c09 (MD5)
Previous issue date: 2011-12-21 / The portfolio theory is a field of study devoted to investigate the decision-making by investors of resources. The purpose of this process is to reduce risk through diversification and thus guarantee a return. Nevertheless, the classical Mean-Variance has been criticized regarding its parameters and it is observed that the use of variance and covariance has sensitivity to the market and parameter estimation. In order to reduce the estimation errors, the Bayesian models have more flexibility in modeling, capable of insert quantitative and qualitative parameters about the behavior of the market as a way of reducing errors. Observing this, the present study aimed to formulate a new matrix model using Bayesian inference as a way to replace the covariance in the MV model, called MCB - Covariance Bayesian model. To evaluate the model, some hypotheses were analyzed using the method ex post facto and sensitivity analysis. The benchmarks used as reference were: (1) the classical Mean Variance, (2) the Bovespa index's market, and (3) in addition 94 investment funds. The returns earned during the period May 2002 to December 2009 demonstrated the superiority of MCB in relation to the classical model MV and the Bovespa Index, but taking a little more diversifiable risk that the MV. The robust analysis of the model, considering the time horizon, found returns near the Bovespa index, taking less risk than the market. Finally, in relation to the index of Mao, the model showed satisfactory, return and risk, especially in longer maturities. Some considerations were made, as well as suggestions for further work / A teoria de portf?lio ? um campo de estudos que se dedica a investigar a tomada de decis?o por investidores de recursos. O prop?sito desse processo ? a redu??o do risco por meio da diversifica??o e, portanto, a garantia de determinado retorno. Apesar disso, o modelo cl?ssico de M?dia-Vari?ncia cont?m cr?ticas quanto a sua parametriza??o, observa-se que o uso da vari?ncia e covari?ncias possui sensibilidade ao mercado e ? estima??o de par?metros. Como forma de redu??o dos erros de estima??o, os modelos bayesianos possuem mais flexibilidade na modelagem, com a possibilidade de inserir par?metros quantitativos e qualitativos sobre o comportamento do mercado como forma de redu??o de erros. Observando isso, o presente trabalho teve como objetivo formular um novo modelo de matriz por meio do teorema de Bayes, como forma de substitui??o da covari?ncia no modelo M-V, denominado de MCB - Modelo de Covari?ncia Bayesiana. Para avalia??o do modelo, algumas hip?teses s?o formuladas por meio do m?todo ex post facto e por an?lise de sensibilidade. Os benchmarks utilizados como refer?ncia foram: (1) o modelo cl?ssico de M?dia Vari?ncia; (2) o ?ndice de mercado da Bovespa; e, (3) 94 Fundos de Investimento. Os retornos acumulados durante o per?odo de maio de 2002 a dezembro de 2009 demonstraram superioridade do MCB em rela??o ao modelo cl?ssico M-V e o ?ndice Bovespa, por?m assumindo um pouco mais de risco diversific?vel que o M-V. A an?lise robusta do modelo, considerando o horizonte de tempo, constatou retornos pr?ximos ao Ibovespa, considerando menor risco que o mercado. Por ?ltimo, em rela??o ao ?ndice de Mao, o modelo se demonstrou satisfat?rio, em retorno e risco, principalmente em prazos mais longos. Por fim, algumas considera??es s?o realizadas, bem como sugest?es de futuros trabalhos
|
229 |
Controle ótimo de sistemas com saltos Markovianos e ruído multiplicativo com custos linear e quadrático indefinido. / Indefinite quadratic with linear costs optimal control of Markov jump with multiplicative noise systems.Wanderlei Lima de Paulo 01 November 2007 (has links)
Esta tese trata do problema de controle ótimo estocástico de sistemas com saltos Markovianos e ruído multiplicativo a tempo discreto, com horizontes de tempo finito e infinito. A função custo é composta de termos quadráticos e lineares nas variáveis de estado e de controle, com matrizes peso indefinidas. Como resultado principal do problema com horizonte finito, é apresentada uma condição necessária e suficiente para que o problema de controle seja bem posto, a partir da qual uma solução ótima é derivada. A condição e a lei de controle são escritas em termos de um conjunto acoplado de equações de Riccati interconectadas a um conjunto acoplado de equações lineares recursivas. Para o caso de horizonte infinito, são apresentadas as soluções ótimas para os problemas de custo médio a longo prazo e com desconto, derivadas a partir de uma solução estabilizante de um conjunto de equações algébricas de Riccati acopladas generalizadas (GCARE). A existência da solução estabilizante é uma condição suficiente para que tais problemas sejam do tipo bem posto. Além disso, são apresentadas condições para a existência das soluções maximal e estabilizante do sistema GCARE. Como aplicações dos resultados obtidos, são apresentadas as soluções de um problema de otimização de carteiras de investimento com benchmark e de um problema de gestão de ativos e passivos de fundos de pensão do tipo benefício definido, ambos os casos com mudanças de regime nas variáreis de mercado. / This thesis considers the finite-horizon and infinite-horizon stochastic optimal control problem for discrete-time Markov jump with multiplicative noise linear systems. The performance criterion is assumed to be formed by a linear combination of a quadratic part and a linear part in the state and control variables. The weighting matrices of the state and control for the quadratic part are allowed to be indefinite. For the finite-horizon problem the main results consist of deriving a necessary and sufficient condition under which the problem is well posed and a optimal control law is derived. This condition and the optimal control law are written in terms of a set of coupled generalized Riccati difference equations interconnected with a set of coupled linear recursive equations. For the infinite-horizon problem a set of generalized coupled algebraic Riccati equations (GCARE) is studied. In this case, a sufficient condition under which there exists the maximal solution and a necessary and sufficient condition under which there exists the mean square stabilizing solution for the GCARE are presented. Moreover, a solution for the discounted and long run average cost problems is presented. The results obtained are applied to solver a portfolio optimization problem with benchmark and a pension fund problem with regime switching.
|
230 |
Seleção dinâmica de portfólios em média-variância com saltos Markovianos. / Dynamic mean-variance portfolio selection with Markov regime switching.Michael Viriato Araujo 19 October 2007 (has links)
Investiga-se, em tempo discreto, o problema multi-período de otimização de carteiras generalizado em média-variância cujos coeficientes de mercado são modulados por uma cadeia de Markov finita. O problema multi-período generalizado de média-variância com saltos Markovianos (PGMV ) é um problema de controle estocástico sem restrição cuja função objetivo consiste na maximização da soma ponderada ao longo do tempo da combinação linear de três elementos: o valor esperado da riqueza do investidor, o quadrado da esperança desta riqueza e a esperança do quadrado deste patrimônio. A principal contribuição deste trabalho é a derivação analítica de condições necessárias e suficientes para a determinação de uma estratégia ótima de investimento para o problema PGMV . A partir deste modelo são derivadas várias formulações de médiavariância, como o modelo tradicional cujo objetivo é maximizar o valor esperado da riqueza final do investidor, dado um nível de risco (variância) do portfólio no horizonte de investimento, bem como o modelo mais complexo que busca maximizar a soma ponderada das esperanças da riqueza ao longo do tempo, limitando a perda deste patrimônio em qualquer momento. Adicionalmente, derivam-se formas fechadas para a solução dos problemas citados quando as restrições incidem somente no instante final. Outra contribuição deste trabalho é a extensão do modelo PGMV para a solução do problema de seleção de carteiras em média-variância com o objetivo de superar um benchmark estocástico, com restrições sobre o valor esperado ou sobre a variância do tracking error do portfólio. Por fim, aplicam-se os resultados obtidos em exemplos numéricos cujo universo de investimento são todas as ações do IBOVESPA. / In this work we deal with a discrete-time multi-period mean-variance portfolio selection model with the market parameters subject to Markov regime switching. The multi-period generalized mean-variance portfolio selection model with regime switching (PGMV ) is an unrestricted stochastic control problem, in which the objective function involves the maximization of the weighted sum of a linear combination of three parts: the expected wealth, the square of the expected wealth and the expected value of the wealth squared. The main contribution of this work is the analytical derivation of necessary and sufficient conditions for the existence of an optimal control strategy to this PGMV model. We show that several mean-variance models are derived from the PGMV model, as the traditional formulation in which the objective is to maximize the expected terminal wealth for a given final risk (variance), or the complex one in which the objective function is to maximize the weighted sum of the wealth throughout its investment horizon, with control over maximum wealth lost. Additionally, we derive closed forms solutions for the above models when the restrictions are just in the final time. Another contribution of this work is to extend the PGMV model to solve the multi-period portfolio selection problem of beating a stochastic benchmark with control over the tracking error variance or its expected value. Finally, we run numerical examples in which the investment universe is formed by all the stocks belonging to the IBOVESPA.
|
Page generated in 0.1072 seconds