• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 195
  • 24
  • 17
  • 10
  • 9
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 338
  • 214
  • 143
  • 105
  • 70
  • 61
  • 56
  • 47
  • 44
  • 43
  • 43
  • 43
  • 39
  • 38
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

AFFECT-PRESERVING VISUAL PRIVACY PROTECTION

Xu, Wanxin 01 January 2018 (has links)
The prevalence of wireless networks and the convenience of mobile cameras enable many new video applications other than security and entertainment. From behavioral diagnosis to wellness monitoring, cameras are increasing used for observations in various educational and medical settings. Videos collected for such applications are considered protected health information under privacy laws in many countries. Visual privacy protection techniques, such as blurring or object removal, can be used to mitigate privacy concern, but they also obliterate important visual cues of affect and social behaviors that are crucial for the target applications. In this dissertation, we propose to balance the privacy protection and the utility of the data by preserving the privacy-insensitive information, such as pose and expression, which is useful in many applications involving visual understanding. The Intellectual Merits of the dissertation include a novel framework for visual privacy protection by manipulating facial image and body shape of individuals, which: (1) is able to conceal the identity of individuals; (2) provide a way to preserve the utility of the data, such as expression and pose information; (3) balance the utility of the data and capacity of the privacy protection. The Broader Impacts of the dissertation focus on the significance of privacy protection on visual data, and the inadequacy of current privacy enhancing technologies in preserving affect and behavioral attributes of the visual content, which are highly useful for behavior observation in educational and medical settings. This work in this dissertation represents one of the first attempts in achieving both goals simultaneously.
202

Pose AR: Assessing Pose Based Input in an AR Context

Jakub, Nilsson January 2019 (has links)
Despite the rapidly growing adoption of augmented reality (AR) applications, existing methods for interacting with AR content are rated poorly, with surveyors of the area calling for better means of interaction, while researchers strive to create more natural input methods, mainly focusing on gesture input. This thesis aims to contribute to the aforementioned efforts by recognizing that technologies for consumer-grade smartphone-based pose estimation have been rapidly improving in recent years and due to their increased accuracy may have untapped potential ready to be utilized for user input. To this end, a rudimentary system for pose based input is integrated into prototype applications, which are constructed with both pose based input and touch input in mind. In this work, pose, pose estimation, and posed based input refer to using the distance and orientation of the user (or more precisely, the distance and orientation of their device) in relation to the AR content. Using said prototypes within a user interaction study allowed the identification of user preferences which indicate the approaches that future efforts into utilizing pose for input in an AR context ought to adopt. By comparing questionnaire answers and logged positional data across four prototype scenarios, it can be clearly identified that to perceive pose input as intuitive, the AR experiences shouldn’t employ a scale which is so large that it requires substantial shifts in the position of the user, as opposed to merely shifts in the position of the user’s device.
203

Vision based pose estimation for autonomous helicopter landing / Kamerabaserad position- och attitydskattning för autonom helikopterlandning

Saläng, Björn, Salomonsson, Henrik January 2008 (has links)
<p>The market for unmanned aerial vehicles (UAVs) is growing rapidly. In order to meet the demand for marine applications CybAero AB has recently started a project named Mobile Automatic Launch and Landing Station (MALLS). MALLS enables the uav to land on moving targets such as ships. This thesis studies a system that estimates the pose of a helicopter in order to land on a moving target.</p><p>The main focus has been on developing a pose estimation system using computer vision. Two different methods for estimating the pose have been studied, one using homography and one using an Extended Kalman Filter (ekf). Both methods have been tested on real flight data from a camera mounted on a RC-helicopter. The accuracy of the pose estimation system has been verified with data from a test with the camera mounted on an industrial robot. The test results show that the ekf-based system is less sensitive to noise than the homography-based system. The ekf-based system however requires initial values which the homography-based system does not. The accuracy of both systems is found to be good enough for the purpose.</p><p>A novel control system with control rules for performing an autonomous landing on a moving target has been developed. The control system has not been tested during flight.</p> / <p>Marknaden for obemannade autonoma luftburna farkoster (UAV:er) växer snabbt. För att möta behovet av marina tillämpningar har CybAero AB nyligen startat ett projekt som kallas Mobil Automatisk Start- och Landningsstation (MALLS). Syftet med malls är att möjliggöra autonom start och landning på objekt i rörelse, som till exempel ett fartyg. I det här examensarbetet studeras ett system för att bestämma position och attityd för en helikopter relativt en helikopterplatta, för att möjliggöra landning på ett ojekt i rörelse.</p><p>Fokus har främst legat på att utveckla ett positionerings- och attitydbestämningssystem. Ett datorseende positionerings- och attitydbestämningssystem har utvecklats. Två olika metoder har undersökts, ett system som bygger på homografi och ett annat som bygger på Extended Kalman Filter (EKF). Båda metoderna har testats med verklig data från en kamera monterad på en RC helikopter. Noggrannheten i positionsbestämmelsen har undersökts med hjälp av data från en industrirobot. Testresultaten visar att det EKF-baserade systemet är mindre bruskänsligt än det homografibaserade systemet. En nackdel med det ekf-baserade systemet är däremot att det kräver initialvillkor vilket det homografibaserade systemet inte gör. Noggrannheten på båda systemen finner vi tillfredsställande för syftet.</p><p>Ett enkelt styrsystem med styrlagar för att genomföra landningar på ett rörligtobjekt har utvecklats. Styrsystemet har dock inte testats under verklig flygning.</p>
204

Compact Representations and Multi-cue Integration for Robotics

Söderberg, Robert January 2005 (has links)
<p>This thesis presents methods useful in a bin picking application, such as detection and representation of local features, pose estimation and multi-cue integration.</p><p>The scene tensor is a representation of multiple line or edge segments and was first introduced by Nordberg in [30]. A method for estimating scene tensors from gray-scale images is presented. The method is based on orientation tensors, where the scene tensor can be estimated by correlations of the elements in the orientation tensor with a number of 1<em>D</em> filters. Mechanisms for analyzing the scene tensor are described and an algorithm for detecting interest points and estimating feature parameters is presented. It is shown that the algorithm works on a wide spectrum of images with good result.</p><p>Representations that are invariant with respect to a set of transformations are useful in many applications, such as pose estimation, tracking and wide baseline stereo. The scene tensor itself is not invariant and three different methods for implementing an invariant representation based on the scene tensor is presented. One is based on a non-linear transformation of the scene tensor and is invariant to perspective transformations. Two versions of a tensor doublet is presented, which is based on a geometry of two interest points and is invariant to translation, rotation and scaling. The tensor doublet is used in a framework for view centered pose estimation of 3<em>D</em> objects. It is shown that the pose estimation algorithm has good performance even though the object is occluded and has a different scale compared to the training situation.</p><p>An industrial implementation of a bin picking application have to cope with several different types of objects. All pose estimation algorithms use some kind of model and there is yet no model that can cope with all kinds of situations and objects. This thesis presents a method for integrating cues from several pose estimation algorithms for increasing the system stability. It is also shown that the same framework can also be used for increasing the accuracy of the system by using cues from several views of the object. An extensive test with several different objects, lighting conditions and backgrounds shows that multi-cue integration makes the system more robust and increases the accuracy.</p><p>Finally, a system for bin picking is presented, built from the previous parts of this thesis. An eye in hand setup is used with a standard industrial robot arm. It is shown that the system works for real bin-picking situations with a positioning error below 1 mm and an orientation error below 1<sup>o</sup> degree for most of the different situations.</p> / Report code: LiU-TEK-LIC-2005:15.
205

Triangulation Based Fusion of Sonar Data with Application in Mobile Robot Mapping and Localization

Wijk, Olle January 2001 (has links)
No description available.
206

Acquiring 3D Full-body Motion from Noisy and Ambiguous Input

Lou, Hui 2012 May 1900 (has links)
Natural human motion is highly demanded and widely used in a variety of applications such as video games and virtual realities. However, acquisition of full-body motion remains challenging because the system must be capable of accurately capturing a wide variety of human actions and does not require a considerable amount of time and skill to assemble. For instance, commercial optical motion capture systems such as Vicon can capture human motion with high accuracy and resolution while they often require post-processing by experts, which is time-consuming and costly. Microsoft Kinect, despite its high popularity and wide applications, does not provide accurate reconstruction of complex movements when significant occlusions occur. This dissertation explores two different approaches that accurately reconstruct full-body human motion from noisy and ambiguous input data captured by commercial motion capture devices. The first approach automatically generates high-quality human motion from noisy data obtained from commercial optical motion capture systems, eliminating the need for post-processing. The second approach accurately captures a wide variety of human motion even under significant occlusions by using color/depth data captured by a single Kinect camera. The common theme that underlies two approaches is the use of prior knowledge embedded in pre-recorded motion capture database to reduce the reconstruction ambiguity caused by noisy and ambiguous input and constrain the solution to lie in the natural motion space. More specifically, the first approach constructs a series of spatial-temporal filter bases from pre-captured human motion data and employs them along with robust statistics techniques to filter noisy motion data corrupted by noise/outliers. The second approach formulates the problem in a Maximum a Posterior (MAP) framework and generates the most likely pose which explains the observations as well as consistent with the patterns embedded in the pre-recorded motion capture database. We demonstrate the effectiveness of our approaches through extensive numerical evaluations on synthetic data and comparisons against results created by commercial motion capture systems. The first approach can effectively denoise a wide variety of noisy motion data, including walking, running, jumping and swimming while the second approach is shown to be capable of accurately reconstructing a wider range of motions compared with Microsoft Kinect.
207

Statistical and geometric methods for visual tracking with occlusion handling and target reacquisition

Lee, Jehoon 17 January 2012 (has links)
Computer vision is the science that studies how machines understand scenes and automatically make decisions based on meaningful information extracted from an image or multi-dimensional data of the scene, like human vision. One common and well-studied field of computer vision is visual tracking. It is challenging and active research area in the computer vision community. Visual tracking is the task of continuously estimating the pose of an object of interest from the background in consecutive frames of an image sequence. It is a ubiquitous task and a fundamental technology of computer vision that provides low-level information used for high-level applications such as visual navigation, human-computer interaction, and surveillance system. The focus of the research in this thesis is visual tracking and its applications. More specifically, the object of this research is to design a reliable tracking algorithm for a deformable object that is robust to clutter and capable of occlusion handling and target reacquisition in realistic tracking scenarios by using statistical and geometric methods. To this end, the approaches developed in this thesis make extensive use of region-based active contours and particle filters in a variational framework. In addition, to deal with occlusions and target reacquisition problems, we exploit the benefits of coupling 2D and 3D information of an image and an object. In this thesis, first, we present an approach for tracking a moving object based on 3D range information in stereoscopic temporal imagery by combining particle filtering and geometric active contours. Range information is weighted by the proposed Gaussian weighting scheme to improve segmentation achieved by active contours. In addition, this work present an on-line shape learning method based on principal component analysis to reacquire track of an object in the event that it disappears from the field of view and reappears later. Second, we propose an approach to jointly track a rigid object in a 2D image sequence and to estimate its pose in 3D space. In this work, we take advantage of knowledge of a 3D model of an object and we employ particle filtering to generate and propagate the translation and rotation parameters in a decoupled manner. Moreover, to continuously track the object in the presence of occlusions, we propose an occlusion detection and handling scheme based on the control of the degree of dependence between predictions and measurements of the system. Third, we introduce the fast level-set based algorithm applicable to real-time applications. In this algorithm, a contour-based tracker is improved in terms of computational complexity and the tracker performs real-time curve evolution for detecting multiple windows. Lastly, we deal with rapid human motion in context of object segmentation and visual tracking. Specifically, we introduce a model-free and marker-less approach for human body tracking based on a dynamic color model and geometric information of a human body from a monocular video sequence. The contributions of this thesis are summarized as follows: 1. Reliable algorithm to track deformable objects in a sequence consisting of 3D range data by combining particle filtering and statistics-based active contour models. 2. Effective handling scheme based on object's 2D shape information for the challenging situations in which the tracked object is completely gone from the image domain during tracking. 3. Robust 2D-3D pose tracking algorithm using a 3D shape prior and particle filters on SE(3). 4. Occlusion handling scheme based on the degree of trust between predictions and measurements of the tracking system, which is controlled in an online fashion. 5. Fast level set based active contour models applicable to real-time object detection. 6. Model-free and marker-less approach for tracking of rapid human motion based on a dynamic color model and geometric information of a human body.
208

Triangulation Based Fusion of Sonar Data with Application in Mobile Robot Mapping and Localization

Wijk, Olle January 2001 (has links)
No description available.
209

Visual Perception of Objects and their Parts in Artificial Systems

Schoeler, Markus 12 October 2015 (has links)
No description available.
210

Fusion de données visuo-inertielles pour l'estimation de pose et l'autocalibrage

Scandaroli, Glauco Garcia 14 June 2013 (has links) (PDF)
Les systèmes multi-capteurs exploitent les complémentarités des différentes sources sensorielles. Par exemple, le capteur visuo-inertiel permet d'estimer la pose à haute fréquence et avec une grande précision. Les méthodes de vision mesurent la pose à basse fréquence mais limitent la dérive causée par l'intégration des données inertielles. Les centrales inertielles mesurent des incréments du déplacement à haute fréquence, ce que permet d'initialiser la vision et de compenser la perte momentanée de celle-ci. Cette thèse analyse deux aspects du problème. Premièrement, nous étudions les méthodes visuelles directes pour l'estimation de pose, et proposons une nouvelle technique basée sur la corrélation entre des images et la pondération des régions et des pixels, avec une optimisation inspirée de la méthode de Newton. Notre technique estime la pose même en présence des changements d'illumination extrêmes. Deuxièmement, nous étudions la fusion des données a partir de la théorie de la commande. Nos résultats principaux concernent le développement d'observateurs pour l'estimation de pose, biais IMU et l'autocalibrage. Nous analysons la dynamique de rotation d'un point de vue non linéaire, et fournissons des observateurs stables dans le groupe des matrices de rotation. Par ailleurs, nous analysons la dynamique de translation en tant que système linéaire variant dans le temps, et proposons des conditions d'observabilité uniforme. Les analyses d'observabilité nous permettent de démontrer la stabilité uniforme des observateurs proposés. La méthode visuelle et les observateurs sont testés et comparés aux méthodes classiques avec des simulations et de vraies données visuo-inertielles.

Page generated in 0.0457 seconds