Spelling suggestions: "subject:"dose"" "subject:"pose""
191 |
Fusion de données capteurs visuels et inertiels pour l'estimation de la pose d'un corps rigide / Rigid body pose estimation using fusion of inertial and visual sensor dataSeba, Ali 16 June 2015 (has links)
Cette thèse traite la problématique d'estimation de la pose (position relative et orientation) d'un corps rigide en mouvement dans l’espace 3D par fusion de données issues de capteurs inertiels et visuels. Les mesures inertielles sont fournies à partir d’une centrale inertielle composée de gyroscopes 3 axes et d’accéléromètres 3 axes. Les données visuelles sont issues d’une caméra. Celle-ci est positionnée sur le corps rigide en mouvement, elle fournit des images représentatives du champ visuel perçu. Ainsi, les mesures implicites des directions des lignes, supposées fixes dans l’espace de la scène, projetées sur le plan de l’image seront utilisées dans l’algorithme d’estimation de l’attitude. La démarche consistait d’abord à traiter le problème de la mesure issue du capteur visuel sur une longue séquence en utilisant les caractéristiques de l’image. Ainsi, un algorithme de suivi de lignes a été proposé en se basant sur les techniques de calcul du flux optique des points extraits des lignes à suivre et utilisant une approche de mise en correspondance par minimisation de la distance euclidienne. Par la suite, un observateur conçu dans l’espace SO(3) a été proposé afin d’estimer l’orientation relative du corps rigide dans la scène 3D en fusionnant les données issues de l’algorithme de suivi de lignes avec les données des gyroscopes. Le gain de l’observateur a été élaboré en utilisant un filtre de Kalman de type M.E.K.F. (Multiplicative Extended Kalman Filter). Le problème de l’ambigüité du signe dû à la mesure implicite des directions des lignes a été considéré dans la conception de cet observateur. Enfin, l’estimation de la position relative et de la vitesse absolue du corps rigide dans la scène 3D a été traitée. Deux observateurs ont été proposés : le premier est un observateur en cascade avec découplage entre l’estimation de l’attitude et l’estimation de la position. L’estimation issue de l’observateur d’attitude alimente un observateur non linéaire utilisant des mesures issues des accéléromètres afin de fournir une estimation de la position relative et de la vitesse absolue du corps rigide. Le deuxième observateur, conçu quant à lui directement dans SE(3) , utilise un filtre de Kalman de type M.E.K.F afin d’estimer la pose par fusion de données inertielles (accéléromètres, gyromètres) et des données visuelles. Les performances des méthodes proposées sont illustrées et validées par différents résultats de simulation / AbstractThis thesis addresses the problems of pose estimation of a rigid body moving in 3D space by fusing data from inertial and visual sensors. The inertial measurements are provided from an I.M.U. (Inertial Measurement Unit) composed by accelerometers and gyroscopes. Visual data are from cameras, which positioned on the moving object, provide images representative of the perceived visual field. Thus, the implicit measure directions of fixed lines in the space of the scene from their projections on the plane of the image will be used in the attitude estimation. The approach was first to address the problem of measuring visual sensors after a long sequence using the characteristics of the image. Thus, a line tracking algorithm has been proposed based on optical flow of the extracted points and line matching approach by minimizing the Euclidean distance. Thereafter, an observer in the SO(3) space has been proposed to estimate the relative orientation of the object in the 3D scene by merging the data from the proposed lines tracking algorithm with Gyro data. The observer gain was developed using a Kalman filter type M.E.K.F. (Multiplicative Extended Kalman Filter). The problem of ambiguity in the sign of the measurement directions of the lines was considered in the design of the observer. Finally, the estimation of the relative position and the absolute velocity of the rigid body in the 3D scene have been processed. Two observers were proposed: the first one is an observer cascaded with decoupled from the estimation of the attitude and position estimation. The estimation result of the attitude observer feeds a nonlinear observer using measurements from the accelerometers in order to provide an estimate of the relative position and the absolute velocity of the rigid body. The second observer, designed directly in SE (3) for simultaneously estimating the position and orientation of a rigid body in 3D scene by fusing inertial data (accelerometers, gyroscopes), and visual data using a Kalman filter (M.E.K.F.). The performance of the proposed methods are illustrated and validated by different simulation results
|
192 |
Extraction de comportements reproductibles en avatar virtuelDare, Kodjine 10 1900 (has links)
Face à une image représentant une personne, nous (les êtres humains) pouvons visualiser les différentes parties de la personne en trois dimensions (tridimensionnellement – 3D) malgré l'aspect bidimensionnel (2D) de l'image. Cette compétence est maîtrisée grâce à des années d'analyse des humains. Bien que cette estimation soit facilement réalisable par les êtres humains, elle peut être difficile pour les machines. Dans ce mémoire, nous décrivons une approche qui vise à estimer des poses à partir de vidéos dans le but de reproduire les mouvements observés par un avatar virtuel. Nous poursuivons en particulier deux objectifs dans notre travail. Tout d'abord, nous souhaitons extraire les coordonnées d’un individu dans une vidéo à l’aide de méthodes 2D puis 3D. Dans le second objectif, nous explorons la reconstruction d'un avatar virtuel en utilisant les coordonnées 3D de façon à transférer les mouvements humains vers l'avatar. Notre approche qui consiste à compléter l’estimation des coordonnées 3D par des coordonnes 2D permettent d’obtenir de meilleurs résultats que les méthodes existantes. Finalement nous appliquons un transfert des positions par image sur le squelette d'un avatar virtuel afin de reproduire les mouvements extraits de la vidéo. / Given an image depicting a person, we (human beings) can visualize the different parts of the person in three dimensions despite the two-dimensional aspect of the image. This perceptual skill is mastered through years of analyzing humans. While this estimation is easily achievable for human beings, it can be challenging for machines. 3D human pose estimation uses a 3D skeleton to represent the human body posture. In this thesis, we describe an approach that aims at estimating poses from video with the objective of reproducing the observed movements by a virtual avatar. We aim two main objectives in our work. First, we achieve the extraction of initial body parts coordinates in 2D using a method that predicts joint locations by part affinities (PAF). Then, we estimate 3D body parts coordinates based on a human full 3D mesh reconstruction approach supplemented by the previously estimated 2D coordinates. Secondly, we explore the reconstruction of a virtual avatar using the extracted 3D coordinates with the prospect to transfer human movements towards the animated avatar. This would allow to extract the behavioral dynamics of a human. Our approach consists of multiple subsequent stages that show better results in the estimation and extraction than similar solutions due to this supplement of 2D coordinates. With the final extracted coordinates, we apply a transfer of the positions (per frame) to the skeleton of a virtual avatar in order to reproduce the movements extracted from the video.
|
193 |
Estimation de pose 2D par réseau convolutifHuppé, Samuel 04 1900 (has links)
Magic: The Gathering} est un jeu de cartes à collectionner stochastique à information imparfaite inventé par Richard Garfield en 1993. Le but de ce projet est de proposer un pipeline d'apprentissage machine permettant d'accomplir la détection et la localisation des cartes du jeu \textit{Magic} au sein d'une image typique des tournois de ce jeu. Il s'agit d'un problème de pose d'objets 2D à quatre degrés de liberté soit, la position sur deux axes, la rotation et l'échelle, dans un contexte où les cartes peuvent être superposées. À travers ce projet, nous avons développé une approche par données synthétiques à deux réseaux capable, collectivement d'identifier, et de régresser ces paramètres avec une précision significative. Dans le cadre de ce projet, nous avons développé un algorithme d'apprentissage profond par données synthétiques capable de positionner une carte avec une précision d'un demi pixel et d'une rotation de moins d'un degré. Finalement, nous avons montré que notre jeu de données synthétique est suffisamment réaliste pour permettre à nos réseaux de généraliser aux cas d'images réelles. / Magic: The Gathering} is an imperfect information, stochastic, collectible card game invented by Richard Garfield in 1993. The goal of this project is to propose a machine learning pipeline capable of detecting and localising \textit{Magic} cards within an image. This is a 2D pose problem with 4 degrees of freedom, namely translation in $x$ and $y$, rotation, and scale, in a context where cards can be superimposed on one another. We tackle this problem by relying on deep learning using a combination of two separate neural networks. Our final pipeline has the ability to tackle real-world images and gives, with a very good degree of precision, the poses of cards within an image. Through the course of this project, we have developped a method of realistic synthetic data generation to train both our models to tackle real world images. The results show that our pose subnetwork is able to predict position within half a pixel, rotation within one degree and scale within 2 percent.
|
194 |
Skeleton Tracking for Sports Using LiDAR Depth Camera / Skelettspårning för sport med LiDAR-djupkameraEfstratiou, Panagiotis January 2021 (has links)
Skeletal tracking can be accomplished deploying human pose estimation strategies. Deep learning is shown to be the paramount approach in the realm where in collaboration with a ”light detection and ranging” depth camera the development of a markerless motion analysis software system seems to be feasible. The project utilizes a trained convolutional neural network in order to track humans doing sport activities and to provide feedback after biomechanical analysis. Implementations of four filtering methods are presented regarding movement’s nature, such as kalman filter, fixedinterval smoother, butterworth and moving average filter. The software seems to be practicable in the field evaluating videos at 30Hz, as it is demonstrated by indoor cycling and hammer throwing events. Nonstatic camera behaves quite well against a standstill and upright person while the mean absolute error is 8.32% and 6.46% referential to left and right knee angle, respectively. An impeccable system would benefit not only the sports domain but also the health industry as a whole. / Skelettspårning kan åstadkommas med hjälp av metoder för uppskattning av mänsklig pose. Djupinlärningsmetoder har visat sig vara det främsta tillvägagångssättet och om man använder en djupkamera med ljusdetektering och varierande omfång verkar det vara möjligt att utveckla ett markörlöst system för rörelseanalysmjukvara. I detta projekt används ett tränat neuralt nätverk för att spåra människor under sportaktiviteter och för att ge feedback efter biomekanisk analys. Implementeringar av fyra olika filtreringsmetoder för mänskliga rörelser presenteras, kalman filter, utjämnare med fast intervall, butterworth och glidande medelvärde. Mjukvaran verkar vara användbar vid fälttester för att utvärdera videor vid 30Hz. Detta visas genom analys av inomhuscykling och släggkastning. En ickestatisk kamera fungerar ganska bra vid mätningar av en stilla och upprättstående person. Det genomsnittliga absoluta felet är 8.32% respektive 6.46% då vänster samt höger knävinkel användes som referens. Ett felfritt system skulle gynna såväl idrottssom hälsoindustrin.
|
195 |
[pt] REDES DE GRAFOS SEMÂNTICOS COM ATENÇÃO E DECOMPOSIÇÃO DE TENSORES PARA VISÃO COMPUTACIONAL E COMPUTAÇÃO GRÁFICA / [en] SEMANTIC GRAPH ATTENTION NETWORKS AND TENSOR DECOMPOSITIONS FOR COMPUTER VISION AND COMPUTER GRAPHICSLUIZ JOSE SCHIRMER SILVA 02 July 2021 (has links)
[pt] Nesta tese, propomos novas arquiteturas para redes neurais profundas utlizando métodos de atenção e álgebra multilinear para aumentar seu desempenho. Também exploramos convoluções em grafos e suas particularidades. Nos concentramos aqui em problemas relacionados à estimativa de pose em tempo real. A estimativa de pose é um problema desafiador em visão computacional com muitas aplicações reais em áreas como realidade aumentada, realidade virtual, animação por computador e reconstrução de cenas 3D. Normalmente, o problema a ser abordado envolve estimar a pose humana 2D ou 3D, ou seja, as partes do corpo de pessoas em imagens ou vídeos, bem como seu posicionamento e estrutura. Diveros trabalhos buscam atingir alta precisão usando arquiteturas baseadas em redes neurais de convolução convencionais; no entanto, erros causados por oclusão e motion blur não são incomuns, e ainda esses modelos são computacionalmente pesados para aplicações em tempo real. Exploramos diferentes arquiteturas para melhorar o tempo de processamento destas redes e, como resultado, propomos dois novos modelos de rede neural para estimativa de pose 2D e 3D. Também apresentamos uma nova arquitetura para redes de atenção em grafos chamada de atenção em grafos semânticos. / [en] This thesis proposes new architectures for deep neural networks with attention enhancement and multilinear algebra methods to increase their performance. We also explore graph convolutions and their particularities. We focus here on the problems related to real-time pose estimation. Pose estimation is a challenging problem in computer vision with many real applications in areas including augmented reality, virtual reality, computer animation, and 3D scene reconstruction. Usually, the problem to be addressed
involves estimating the 2D and 3D human pose, i.e., the anatomical keypoints or body parts of persons in images or videos. Several papers propose approaches to achieve high accuracy using architectures based on conventional convolution neural networks; however, mistakes caused by occlusion and motion blur are not uncommon, and those models are computationally very intensive for real-time applications. We explore different architectures to improve processing time, and, as a result, we propose two novel neural network models for 2D and 3D pose estimation. We also introduce a new architecture for Graph attention networks called Semantic Graph Attention.
|
196 |
Real-Time Head Pose Estimation in Low-Resolution Football Footage / Realtidsestimering av huvudets vridning i lågupplösta videosekvenser från fotbollsmatcherLaunila, Andreas January 2009 (has links)
This report examines the problem of real-time head pose estimation in low-resolution football footage. A method is presented for inferring the head pose using a combination of footage and knowledge of the locations of the football and players. An ensemble of randomized ferns is compared with a support vector machine for processing the footage, while a support vector machine performs pattern recognition on the location data. Combining the two sources of information outperforms either in isolation. The location of the football turns out to be an important piece of information. / QC 20100707 / Capturing and Visualizing Large scale Human Action (ACTVIS)
|
197 |
Vision-Based Techniques for Cognitive and Motor Skill AssessmentsFloyd, Beatrice K. 24 August 2012 (has links)
No description available.
|
198 |
Mobility anomaly detection with intelligent video surveillanceEbrahimi, Fatemeh 06 1900 (has links)
Dans ce mémoire, nous présentons une étude visant à améliorer les soins aux personnes
âgées grâce à la mise en œuvre d'un système de vidéosurveillance intelligent avancé. Ce système
est conçu pour exploiter la puissance des algorithmes d’apprentissage profond pour détecter les
anomalies de mobilité, avec un accent particulier sur l’identification des quasi-chutes.
L’importance d’identifier les quasi-chutes réside dans le fait que les personnes qui subissent de
tels événements au cours de leurs activités quotidiennes courent un risque accru de subir des
chutes à l’avenir pouvant mener à des blessures graves et une hospitalisation.
L’une des principales réalisations de notre étude est le développement d’un auto-encodeur
capable de détecter les anomalies de mobilité, en particulier les quasi-chutes, en identifiant des
erreurs de reconstruction élevées sur cinq images consécutives. Pour extraire avec précision une
structure squelettique de la personne, nous avons utilisé MoveNet et affiné ce modèle sur sept
points clés. Par la suite, nous avons utilisé un ensemble complet de 20 caractéristiques, englobant
les positions des articulations, les vitesses, les accélérations, les angles et les accélérations
angulaires, pour entraîner l’auto-encodeur.
Afin d'évaluer l'efficacité de notre modèle, nous avons effectué des tests rigoureux à l'aide
de 100 vidéos d'activités quotidiennes simulées enregistrées dans un laboratoire d'appartement,
la moitié des vidéos contenant des cas de quasi-chutes. Un autre ensemble de 50 vidéos a été
utilisé pour l’entrainement. Les résultats de notre phase de test sont très prometteurs, car ils
indiquent que notre modèle est capable de détecter efficacement les quasi-chutes avec une
sensibilité, une spécificité et une précision impressionnantes de 90 %. Ces résultats soulignent le
potentiel de notre modèle à améliorer considérablement les soins aux personnes âgées dans leur
environnement de vie. / In this thesis, we present a comprehensive study aimed at enhancing elderly care through
the implementation of an advanced intelligent video surveillance system. This system is designed
to leverage the power of deep learning algorithms to detect mobility anomalies, with a specific
focus on identifying near-falls. The significance of identifying near-falls lies in the fact that
individuals who experience such events during their daily activities are at an increased risk of
experiencing falls in the future that can lead to serious injury and hospitalization.
A key achievement of our study is the successful development of an autoencoder capable of
detecting mobility anomalies, particularly near-falls, by pinpointing high reconstruction errors
across five consecutive frames. To precisely extract a person's skeletal structure, we utilized
MoveNet and focused on seven key points. Subsequently, we employed a comprehensive set of
20 features, encompassing joint positions, velocities, accelerations, angles, and angular
accelerations, to train the model.
In order to assess the efficacy of our model, we conducted rigorous testing using 100 videos
of simulated daily activities recorded in an apartment laboratory, with half of the videos
containing instances of near-falls. Another set of 50 videos was used for training. The results from
our testing phase are highly promising, as they indicate that our model is able to effectively detect
near-falls with an impressive 90% sensitivity, specificity, and accuracy. These results underscore
the potential of our model to significantly enhance elderly care within their living environments.
|
199 |
Contributions à la reconnaissance de visages à partir d'une seule image et dans un contexte non-contrôléVu, Ngoc-Son 19 November 2010 (has links) (PDF)
Bien qu'ayant suscité des recherches depuis 30 ans, le problème de la reconnaissance de visages en contexte de vidéosurveillance, sachant qu'une seule image par individu est disponible pour l'enrôlement, n'est pas encore résolu. Dans ce contexte, les deux dés les plus diciles à relever consistent à développer des algorithmes robustes aux variations d'illumination et aux variations de pose. De plus, il y a aussi une contrainte forte sur la complexité en temps et en occupation mémoire des algorithmes à mettre en oeuvre dans de tels systèmes. Le travail développé dans cette thèse apporte plusieurs avancées innovantes dans ce contexte de reconnaissance faciale en vidéosurveillance. Premièrement, une méthode de normalisation des variations d'illumination visant à simuler les performances de la rétine est proposée en tant que pré-traitement des images faciales. Deuxièmement, nous proposons un nouveau descripteur appelé POEM (Patterns of Oriented Edge Magnitudes) destiné à représenter les structures locales d'une image. Ce descripteur est discriminant, robuste aux variations extérieures (variations de pose, d'illumination, d'expression, d'âge que l'on rencontre souvent avec les visages). Troisièmement, un modèle statistique de reconnaissance de visages en conditions de pose variables, centré sur une modélisation de la manière dont l'apparence du visage évolue lorsque le point de vue varie, est proposé. Enn, une nouvelle approche visant à modéliser les relations spatiales entre les composantes du visage est présentée. A l'exception de la dernière approche, tous les algorithmes proposés sont très rapides à calculer et sont donc adaptés à la contrainte de traitement temps réel des systèmes de vidéosurveillance.
|
200 |
Méthodes d'apprentissage pour l'estimation de la pose de la tête dans des images monoculairesBailly, Kévin 09 July 2010 (has links) (PDF)
Cette thèse s'inscrit dans le cadre de PILE, un projet médical d'analyse du regard, des gestes, et des productions vocales d'enfants en bas âge. Dans ce contexte, nous avons conçu et développé des méthodes de détermination de l'orientation de la tête, pierre angulaire des systèmes d'estimation de la direction du regard. D'un point de vue méthodologique, nous avons proposé BISAR (Boosted Input Selection Algorithm for Regression), une méthode de sélection de caractéristiques adaptée aux problèmes de régression. Elle consiste à sélectionner itérativement les entrées d'un réseau de neurones incrémental. Chaque entrée est associée à un descripteur sélectionné à l'aide d'un critère original qui mesure la dépendance fonctionnelle entre un descripteur et les valeurs à prédire. La complémentarité des descripteurs est assurée par un processus de boosting qui modifie, à chaque itération, la distribution des poids associés aux exemples d'apprentissage. Cet algorithme a été validé expérimentalement au travers de deux méthodes d'estimation de la pose de la tête. La première approche apprend directement la relation entre l'apparence d'un visage et sa pose. La seconde aligne un modèle de visage dans une image, puis estime géométriquement l'orientation de ce modèle. Le processus d'alignement repose sur une fonction de coût qui évalue la qualité de l'alignement. Cette fonction est apprise par BISAR à partir d'exemples de modèles plus ou moins bien alignés. Les évaluations de ces méthodes ont donné des résultats équivalents ou supérieurs aux méthodes de l'état de l'art sur différentes bases présentant de fortes variations de pose, d'identité, d'illumination et de conditions de prise de vues.
|
Page generated in 0.3451 seconds