• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 64
  • 32
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 1
  • 1
  • Tagged with
  • 151
  • 151
  • 151
  • 91
  • 78
  • 45
  • 38
  • 34
  • 30
  • 30
  • 30
  • 28
  • 28
  • 28
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The role of secondary signaling in experimental autoimmune thyroiditis

Peterson, Karin E. January 1998 (has links)
Thesis (Ph. D.)--University of Missouri--Columbia, 1998. / Typescript. Vita. Includes bibliographical references (leaves: 190-217). Also available on the Internet.
32

T Cell Immunity and HIV-1 Replication in Vertically-Infected Infants and Children: A Dissertation

Scott, Zachary Aaron 05 May 2003 (has links)
Virus-specific cellular immune responses have been shown to be important in the control of viral replication in several animal and human virus models. Cells of both the CD8+ and CD4+T cell lineages have been shown to play protective roles during viral infections by exerting effector functions that can kill infected host cells or inhibit the production and spread of infectious virions. The continued spread of HIV-1 infection throughout the world, as well as the lack of a prophylactic HIV-1 vaccine have generated much interest in HIV-specific cellular immune responses. Recent technical advances have yielded a tremendous increase in our understanding of HIV-1-specific immunity, as well as HIV-1 replication dynamics and host cell factors that shape the course of acute and chronic infection. Unfortunately, due to small sample volumes and technological limitations, the study of HIV-1-specific T cell immunity in infants and children has been difficult. An improved understanding of the timing, specificity, and intensity of pediatric HIV-specific T cell responses would contribute to the development of a HIV-1 vaccine for use in regions of the developing world without access to antiretroviral therapeutics. In the small number of published studies investigating pediatric HIV-specific immunity, T cell responses were uncommonly detected in infants. It remains unclear, however, whether the lack of HIV-specific T cells is an accurate reflection of the in vivoimmune state in vertically-infected infants, or rather is a consequence of reagents and assays ill-suited to the detection of low-level and/or diverse T cell responses in pediatric subjects. In the present dissertation, several methodologies were used to investigate HIV-specific T cell responses in vertically-infected infants and children. HIV-specific CD8+ T cell responses were infrequently detected in a cohort of young infants, but are commonly detected in older infants and children. Interestingly, CMV-specific CD8+ T cell responses were detected in several young infants that lacked HIV-specific responses, suggesting a specific defect in the ability of some infants to generate HIV-specific CD8+ T cell responses. Further experiments characterizing detectable HIV-1-specific CD8+ T cell responses found that the HIV-1 accessory proteins may be important targets of the immune response during early vertical infection. The role of HLA class I genotype and viral sequence are also explored in a pair of vertically-infected twins with discordant CD8+T cell responses. Finally, viral isolates from an infant with a marked shift in gag-specific epitope usage during infancy are analyzed for the presence of escape mutations. Gag-specific CD4+ T cell responses were commonly detected in a large cohort of vertically-infected children. A linear relationship between HIV-1 replication and the presence and intensity of HIV-specific CD4+ T cell responses was found, but ongoing HIV-1 replication appeared to blunt CD4+T cell proliferation. The data presented in this dissertation describe pediatric T cell immune responses and how they relate to HIV-1 replication. This information may be useful to the design of a prophylactic or therapeutic HIV-1 vaccine for vertically-infected infants and children.
33

The Role of Itk in T Cell Development: A Dissertation

Lucas, Julie Ann 14 January 2005 (has links)
Itk is a member of the Tec family of non-receptor tyrosine kinases. It is expressed in T cells, NK cells, and mast cells. The purpose of this study was to determine the role of Itk in T cell development. Previous work from our lab and others has demonstrated that Itk is involved in signaling downstream of the T cell receptor and initial analysis of Itk-deficient mice revealed that these mice had some defects in T cell development. There are two stages of T cell development, the pre-T cell stage and the CD4+ CD8+ double positive stage, at which signals downstream of the T cell receptor are important. At the CD4+ CD8+ double positive stage, these signals direct two concurrent, but distinct processes known as repertoire selection and CD4/CD8 lineage commitment/differentiation. I show that there are only slight defects in development at the pre-T cell stage, presumably due to reduced TCR signaling. However these results clearly demonstrate that Itk is not essential at this stage of development. In contrast, repertoire selection, in particular positive selection, is significantly affected by the absence of Itk. Similarly, I show that Itk plays a role in lineage differentiation, although commitment to the appropriate lineage occurs normally in the absence of Itk.
34

Macrophages Directly Prime Naïve CD8+ T Cells: a Dissertation

Pozzi, Lu-Ann M. 24 September 2004 (has links)
Professional antigen presenting cells (APCs) represent an important link between the innate and adaptive immune system. Macrophages (MΦs) and dendritic cells (DCs) serve as sentinels in the periphery collecting samples from their environment and processing this information. These cells then present antigenic fragments to T cells in the context of self-MHC molecules. Although a clear role for both of these APCs in the stimulation of already activated or memory T cells has been established, the ability of MΦs to activate naive T cells is still unknown. In this thesis the ability of bone marrow-derived MΦs and DCs to prime naive CD8+ and CD4+ T cells was investigated. Using adoptively transferred transgenic CFSE-Iabeled P-14 T cells, specific for gp33 from lymphocytic choriomeningitis virus in the context of Db, we were able to demonstrate the ability of both MΦs and DCs to induce naive CD8+ T cells proliferation. Once primed by MΦs these T cells gained effector function as shown by interferon- γ (IFN-γ) production and in vivo cytolysis. In addition, immunization of wild type animals with gp33-pulsed MΦs, as well as DCs, led to greater than a 95% reduction in lymphocytic choriomeningitis virus titers. To rule out the role of cross-presentation in the observed priming, two models were used. In the first model, lethally irradiated F1 bxs chimeras reconstituted with either H-2s or H-2b bone marrow were used as host for the adoptive transfer experiments. Since the gp33 peptide binds to Db, the H-2s reconstituted animals should be unable to cross-present the peptide to the P-14 T cells. Using this model, we were able to clearly demonstrate the ability of MΦs to activate naive P-14 T cells to undergo division. Additional experiments, demonstrated that these MΦ primed T cells went on to develop into effector cells. Finally, the ability of the MΦ primed T cells to develop into functional memory cells was demonstrated. To confirm the chimera results, these experiments were repeated using β2 microglobulin deficient animals (whose cells don't express MHC I) as host in adoptive experiments. MΦs were able to stimulate the naive P-14 T cells to divide and gain effector function as demonstrated by the ability to produce IFN-γ. In contrast to the CD8 system, MΦ were poor stimulators of D011.10 CD4+ T cell proliferation. Additionally, D011.10 T cells stimulated by DCs were able to produce interleukin-2 (IL-2), IL-4, tumor necrosis factor and granulocyte-macrophage colony stimulating factor where as MΦ stimulated D011.10 T cells were only able to produce IL-2. In conclusion this body of work clearly demonstrates the in vivo ability of MΦ to stimulate CD8+ T cell proliferation, effector function, as well as the formation of functional CD8+ T cell memory. Whether or not the nature of the memory pools stimulated by the two APCs is exactly the same is still unknown and needs further investigation. The ability of APCs other than DCs to stimulate functional protective memory needs to be considered in the quest to design vaccines that offer broad-spectrum protection.
35

The Role of CD40 in Naïve and Memory CD8+ T Cell Responses: a Dissertation

Hernandez, Maria Genevieve H. 16 May 2007 (has links)
Stimulation of CD40 on APCs through CD40L expressed on helper CD4+ T cells activates and “licenses” the APCs to prime CD8+ T cell responses. While other stimuli, such as TLR agonists, can also activate APCs, it is unclear to what extent they can replace the signals provided by CD40-CD40L interactions. In this study, we used an adoptive transfer system to re-examine the role of CD40 in the priming of naïve CD8+ T cells. We find an approximately 50% reduction in expansion and cytokine production of TCR-transgenic T cells in the absence of CD40 on all APCs, and on dendritic cells in particular. Moreover, CD40-deficient and CD40L-deficient mice fail to develop endogenous CTL responses after immunization and are not protected from a tumor challenge. Surprisingly, the role for CD40 and CD40L are observed even in the absence of CD4+ T cells; in this situation, the CD8+T cell itself provides CD40L. Furthermore, we show that although TLR stimulation improves T cell responses, it cannot fully substitute for CD40. We also investigated whether CD40-CD40L interactions are involved in the generation, maintenance, and function of memory CD8+ T cells. Using a virus infection system as well as a dendritic cell immunization system, we show that the presence of CD40 on DCs and other host APCs influences the survival of activated effector cells and directly affects the number of memory CD8+ T cells that are formed. In addition, memory CD8+ T cell persistence is slightly impaired in the absence of CD40. However, CD40 is not required for reactivation of memory CD8+ T cells. It seems that CD40 signals during priming also contribute to memory CD8+ T cell programming but this function can be independent of CD4+T cells, similar to what we showed for primary responses. Altogether, these results reveal a direct and unique role for CD40L on CD8+ T cells interacting with CD40 on APCs that affects the magnitude and quality of primary as well as memory CD8+ T cell responses.
36

Cross-Reactive Memory CD4<sup>+</sup> and CD8<sup>+</sup> T Cells Alter the Immune Response to Heterologous Secondary Dengue Virus Infections in Mice: A Dissertation

Beaumier, Coreen Michele 08 February 2008 (has links)
Dengue virus (DENV) infects 50-100 million people worldwide every year and is the causative agent of dengue fever (DF) and the more severe dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). There are four genetically and immunologically distinct DENV serotypes (DENV-1, DENV-2, DENV-3, and DENV-4). Evidence suggests that an increased risk for DHF/DSS during secondary infection with a heterologous DENV serotype is due to an immunopathological response mediated by serotype-cross-reactive memory T cells from the primary infection. Furthermore, epidemiological studies have shown that the sequence of infection with different DENV serotypes affects disease severity. Though much has been learned from human studies, there exist uncontrollable variables that are intrinsic in this system such as genetic factors and unknown infection histories. These factors can skew experimental results, making interpretations difficult. Therefore, a murine model to study the immunologic aspects of sequential dengue infections would be an asset to the field of dengue research. To examine the effect of sequential infection with different DENV serotypes on the CD8+ T cell response, we immunized Balb/c mice with a primary DENV infection on day 0 and subsequently challenged with a heterologous secondary DENV infection on day 28. We tested all possible sequences of infection with the four serotypes. We analyzed the T cell response to two previously defined epitopes on the DENV E (Ld-restricted) and NS3 (Kd-restricted) proteins. Using ELISPOT and intracellular cytokine staining, we measured the frequency of T cells secreting IFNγ and TNFα in response to stimulation with these epitopes during three phases: acute primary, acute secondary, and the memory phase after primary infection. We found that the T cell response in heterologous secondary infections was higher in magnitude than the response in acute primary infection or during the memory phase. We also found that the hierarchy of epitope specific responses, as measured by IFNγ secretion, was influenced by the sequence of infections. The adoptive transfer of immune serum or immune splenocytes suggested that memory T cells from the primary infection responded to antigens from the secondary infection. In vitroexperiments with T cell lines generated from mice with primary and secondary DENV infections suggested the preferential expansion of crossreactive memory T cells. In testing all of the different possible sequences of infection, we observed that two different sequences of infection (e.g., DENV-2 followed by DENV-1 versus DENV-2 followed by DENV-3) resulted in differential CD8+ T cell responses to the NS3 peptide even though both secondary infection serotypes contain the identical peptide sequence. To investigate this phenomenon, we examined the role of CD4+ T cell help on the memory CD8+ T cell response. We found that CD4+ T cell cytokine responses differ depending on the sequence of infection. In addition, it was also shown that crossreactivities of the CD4+ T cell response are also sequence-dependent. Moreover, denguespecific memory CD4+ T cells can augment the secondary CD8+ T cell response. Taken together, we demonstrated that this serotype sequence-dependent phenomenon is the result of differential help provided by cross-reactive memory CD4+T cells. The findings in this novel mouse model support the hypothesis that both CD4+ and CD8+ serotype-cross-reactive memory T cells from a primary dengue virus infection alter the immune response during a heterologous secondary dengue virus infection. These data further elucidate potential mechanisms whereby the specific sequence of infection with different dengue virus serotypes influences disease outcomes in humans.
37

The Role of ITK and RLK in CD8+ T Cell Development and Function: a Dissertation

Atherly, Luana O 26 July 2004 (has links)
Itk and Rlk are members of the Tec kinase family of non-receptor protein tyrosine kinases that are preferentially expressed in T cells. Numerous previous studies have demonstrated that these proteins play an important a role in the regulation of signalling processes downstream of TCR activation in CD4+ T cells, particularly in the phosphorylation of PLCγl. In addition, Itk and Rlk have both been shown to be important for CD4+ T cell development, differentiation, function and homeostasis following TCR activation. In the absence of Itk and Rlk, CD8+ SP thymocytes and T cells develop a memory/previously activated phenotypic profile, however, very little is known about the influence of Itk and Rlk on CD8+ T cell development and function. This study illustrates a previously unappreciated role for Itk and Rlk in the regulation of cytokine signals during CD8+ SP thymocyte maturation, and in the development of the memory CD44hi profile of Itk -/- and Itk -/- Rlk -/- CD8+ SP thymocytes and CD8+ T cells. This study also provides the first detailed study of the role of loss of Itk and particularly both Itk and Rlk in CD8+ signalling and function and shows that these Tec kinase family members play an important role in the maintenance of CD8+ T cell fitness and function, particularly in the ability of CD8+ T cells to accumulate in response to infection. Collectively, my studies demonstrate a critical role for Itk and Rlk in the generation of optimal CD8+ T cell responses. They also raise the novel observation that these proteins may be involved on the regulation of cytokine signals in T cells.
38

CD4⁺ and CD8⁺ naïve T-cell homeostasis in primary progressive multiple sclerosis

Hackenbroch, Jessica. January 2007 (has links)
No description available.
39

Generation and expression of high affinity, tumor antigen-specific mouse and human T cell receptors to genetically modify CD8⁺ T cells for adoptive immunotherapy of cancer /

Dossett, Michelle Leigh. January 2006 (has links)
Thesis (Ph. D.)--University of Washington, 2006. / Vita. Includes bibliographical references (leaves 122-135).
40

Chronic Inflammation-Driven Tumor Promotion Asociated with CD8+ T Cells

Ng, Bernice Yu Jing 09 April 2008 (has links)
Chronic inflammation is associated with carcinoma development in several clinical settings, and we sought to investigate the role of T cells in this phenomenon using the DMBA/TPA two-stage chemical carcinogenesis protocol. We demonstrate that, paradoxical to models of immunosurveillance, wild-type (WT) mice have a markedly higher rate of tumor formation relative to strains lacking CD8+ T cells. Adoptive transfers of antibody-coated magnetic bead-enriched peripheral CD8+ T cells into TCRáâ-/- mice confirmed that the increased mean tumor area and progression to carcinoma was attributable to the presence of CD8+ T cells. All analyzed strains of mice in which the CD8 compartment was intact (WT, CD4-/-) showed significant increases in tumor susceptibility. Putative tumor-promoting (T-pro) cells (TCRáâ+CD8+CD44+CD62L- tumor infiltrating lymphocytes, TILs) were directly compared to their phenotypic equivalents in peripheral blood lymphocytes (PBLs). In WT and CD4-deficient mice, CD8+ TILs consistently revealed a markedly higher relative expression, by RT-PCR, of IFNã, TNFá and COX-2, and a striking decrease in expression of perforin. Cytokine-bead analysis (CBA) comparison of CD8+ and CD4+ TIL in tumors from WT mice confirmed the increased expression by the CD8+ TIL of IFNã and TNFá. To our knowledge, this is the first demonstration of increased carcinogenesis attributable to CD8+ TILs, characterized by their high IFNã, TNFá, and COX-2 production and defective perforin production relative to phenotypically equivalent PBLs. These studies may have mechanistic implications for the role of T cells in inflammation-associated carcinogenesis.

Page generated in 0.0477 seconds